1.如果直線等于 查看更多

 

題目列表(包括答案和解析)

如果直線y=kx+1與圓x2+y2+kx+my-4=0交于M、N兩點(diǎn),且M、N關(guān)于直線x+y=0對稱,則不等式組:
kx-y+1≥0
kx-my≤0
y≥0
表示的平面區(qū)域的面積是( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

如果直線y=
4
3
x是雙曲線
x2
a2
-
y2
b2
=1
的一條漸近線,那么該雙曲線的離心率等于( 。
A、
5
3
B、
5
4
C、
4
3
D、2

查看答案和解析>>

如果直線ax+2y+1=0與直線x+y-2=0互相垂直,那么a的值等于(  )
A、1
B、-
1
3
C、-
2
3
D、-2

查看答案和解析>>

10、如果直線α與平面α,β所成的角相等,那么平面α與β的位置關(guān)系是( 。

查看答案和解析>>

如果直線ax+3y+1=0與直線2x+2y-3=0互相垂直,那么a的值等于( 。
A、3
B、-
1
3
C、-3
D、
1
3

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.    14.1:2    15.①②⑤    16.⑤

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米,

∠CAB=60˚.設(shè)∠ACD = α ,∠CDB = β .

,

.……9分

在△ACD中,由正弦定理得:

19.(本小題滿分12分)

解:(1)連結(jié)OP,∵Q為切點(diǎn),PQOQ,

由勾股定理有,

又由已知

即: 

化簡得 …………3分

   (2)由,得

…………6分

故當(dāng)時,線段PQ長取最小值 …………7分

   (3)設(shè)⊙P的半徑為R,∵⊙P與⊙O有公共點(diǎn),⊙O的半徑為1,

即R且R

故當(dāng)時,,此時b=―2a+3=

得半徑最最小值時⊙P的方程為…………12分

20.(本小題滿分12分)

解:(I)過G作GM//CD交CC1于M,交D1C于O。

        ∵G為DD1的中點(diǎn),∴O為D1C的中點(diǎn)

        從而GO

        故四邊形GFBO為平行四邊形…………3分

        ∴GF//BO

        又GF平面BCD1,BO平面BCD1

        ∴GF//平面BCD1。 …………5分

           (II)過A作AH⊥DE于H,

        過H作HN⊥EC于N,連結(jié)AN。

        ∵DC⊥平面ADD1A1,∴CD⊥AH。

        又∵AH⊥DE,∴AH⊥平面ECD。

        ∴AH⊥EC。 …………7分

        又HN⊥EC

        ∴EC⊥平面AHN。

        故AN⊥∴∠ANH為二面角A―CE―D的平面角 …………9分

        在Rt△EAD中,∵AD=AE=1,∴AH=

        在Rt△EAC中,∵EA=1,AC=

          …………12分

        21.(本小題滿分12分)

        解:(I)

         

           (II)

           (III)令上是增函數(shù)

        22.(本小題滿分12分)

        解:(I)

        單調(diào)遞增。 …………2分

        ,不等式無解;

        ;

        所以  …………5分

           (II), …………6分

                                 …………8分

        因為對一切……10分

           (III)問題等價于證明

        由(1)可知

                                                           …………12分

        設(shè)

        易得

        當(dāng)且僅當(dāng)成立。

                                                         …………14分

         

         

         


        同步練習(xí)冊答案