已知橢圓的中心在坐標(biāo)原點(diǎn).焦點(diǎn)為.橢圓上的點(diǎn)到兩個焦點(diǎn)的距離和為4. 查看更多

 

題目列表(包括答案和解析)

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,以其兩個焦點(diǎn)和短軸的兩個端點(diǎn)為頂點(diǎn)的四邊形是一個面積為4的正方形,設(shè)P為該橢圓上的動點(diǎn),C、D的坐標(biāo)分別是(-
2
,0),(
2
,0),則PC•PD的最大值為( 。
A、4
B、2
2
C、3
D、2
2
+2

查看答案和解析>>

精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1、F2在x軸上,長軸A1A2的長為4,左準(zhǔn)線l與x軸的交點(diǎn)為M,
MA1
=2
A1F1

(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)M的直線l'與橢圓交于C、D兩點(diǎn),若
OC
OD
=0
,求直線l'的方程.

查看答案和解析>>

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,長軸A1A2的長為 2
3
,左準(zhǔn)線 l與x軸的交點(diǎn)為M,|MA1|:|A1F1|=
3
:1
,P為橢圓C上的動點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P與 A1,A2均不重合,設(shè)直線 PA1與 PA2的斜率分別為k1,k2,證明:k1•k2為定值;
(Ⅲ)M為過P且垂直于x軸的直線上的點(diǎn),若
|OP|
|OM|
,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓上點(diǎn)P(3
2
,4)
到兩焦點(diǎn)的距離之和是12,則橢圓的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,且長軸長為12,離心率為
1
3
,則橢圓的方程是
x2
36
+
y2
32
=1
x2
36
+
y2
32
=1

查看答案和解析>>

一、選擇題: 本大題共12小題,每小題5分,共60分.

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

B

C

D

B

C

A

D

C

D

B

B

二、填空題:本大題共4小題,每小題4分,共16分.

13.        14.        15.        16.

三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

解:⑴f (x)=?-1=(sin2x,cosx)?(1,2cosx)-1

          =sin2x+2cos2x-1= sin2x+cos2x=2sin(2x+)               3分

      由2kπ-≤2x+≤2kπ+ 得kπ-≤x≤kπ+

      ∴f (x)的遞增區(qū)間為 (k∈Z)                             6分

⑵f (A)=2sin(2A)=2  ∴sin(2A)=1

2A∴A=                                                     9分

由正弦定理得: .∴邊長b的值為.               12分

18.(本小題滿分12分)

 解: 將一顆骰子先后拋擲2次,此問題中含有36個等可能基本事件               1分

(1)記“兩數(shù)之和為5”為事件A,則事件A中含有4個基本事件,

所以P(A)=;

答:兩數(shù)之和為5的概率為.                                            4分

 (2)記“兩數(shù)中至少有一個奇數(shù)”為事件B,則事件B與“兩數(shù)均為偶數(shù)”為對立事件,

所以P(B)=;

答:兩數(shù)中至少有一個奇數(shù)的概率.                                     8分

(3)基本事件總數(shù)為36,點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部記為事件C,則C包含8個事件,

所以P(C)=

答:點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部的概率.                               12分

19.(本小題滿分12分)

(1)證法1:如圖,取的中點(diǎn),連接

分別為的中點(diǎn),∴

分別為的中點(diǎn),∴

四點(diǎn)共面.………………………………………………………………2分

分別為的中點(diǎn),∴.……………………………………4分

平面平面,

平面.……………………………………………………………………6分

證法2:∵分別為的中點(diǎn),

,.……………………………………………………………2分

,∴.又

                          …………………4分

,∴平面平面.               …………………5分

平面,∴平面. …………………………………………6分

(2)解:∵平面,平面,∴

為正方形,∴

,∴平面.……………………………………………8分

,,∴.……………10分

,

.…………………………………12分

20.(本小題滿分12分)

解:(1)∵

                                     …………………2分

(2)證明:

    

        是以為首項(xiàng),2為公比的等比數(shù)列.        ………………7分

       (3)由(I)得

      

                                         ………………12分

21.(本小題滿分12分)

解:(1)設(shè)切線的斜率為k,則           ………2分

    又,所以所求切線的方程為:                           …………4分

     即                                                                              …………6分

   (2), ∵為單調(diào)增函數(shù),∴

    即對任意的                                                 …………8分

   

                                                                          …………10分

    而,當(dāng)且僅當(dāng)時(shí),等號成立.

所以                                                  …………12分

22.(本小題滿分14分)

解:(1)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為

       由已知得:                       …………3分

       橢圓的標(biāo)準(zhǔn)方程為.                                 …………5分

       (2)設(shè)

       聯(lián)立      得:,      …………6分

則        …………8分

       又

       因?yàn)橐?sub>為直徑的圓過橢圓的右頂點(diǎn),

       ,即.                            …………9分

      

      

       .                                      …………10分

       解得:,且均滿足.         …………11分

       當(dāng)時(shí),的方程,直線過點(diǎn),與已知矛盾;…………12分

       當(dāng)時(shí),的方程為,直線過定點(diǎn).     …………13分

       所以,直線過定點(diǎn),定點(diǎn)坐標(biāo)為.                         …………14分

 

 

 

 

 


同步練習(xí)冊答案