查看更多

 

題目列表(包括答案和解析)

本題滿分12分)學(xué)校文娛隊(duì)的每位隊(duì)員唱歌、跳舞至少會(huì)一項(xiàng),已知會(huì)唱歌的有2人,會(huì)跳舞的有5人,現(xiàn)從中選2人,設(shè)ξ為選出的人中既會(huì)唱歌又會(huì)跳舞的人數(shù),且P(ξ>0)=,

(1)求文娛隊(duì)的人數(shù);(2)寫出ξ的概率分布列并計(jì)算.

查看答案和解析>>

本題滿分12分)設(shè)數(shù)列滿足其前項(xiàng)和為,

   (1)求之間的關(guān)系;  (2)求數(shù)列的通項(xiàng)公式; (3)求證:

查看答案和解析>>

本題滿分12分)設(shè)數(shù)列滿足其前項(xiàng)和為,

   (1)求之間的關(guān)系;  (2)求數(shù)列的通項(xiàng)公式; (3)求證:

查看答案和解析>>

本題滿分12分)
已知函數(shù)
(Ⅰ)求證:函數(shù)上單調(diào)遞增;
(Ⅱ)對恒成立,求的取值范圍.

查看答案和解析>>

本題滿分12分)
等差數(shù)列的各項(xiàng)均為正數(shù),,前n項(xiàng)和為是等比數(shù)列,

(1)求列數(shù)的通項(xiàng)公式;
(2)求的值.

查看答案和解析>>

1.C  2.D 3.A  4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B

13.2  14. 15.16.①③④

17.

18.解:

.

⑵在上單調(diào)遞增,在上單調(diào)遞減.

所以,當(dāng)時(shí),;當(dāng)時(shí),.

的值域?yàn)?sub>.

19.解:⑴直線①,

過原點(diǎn)垂直于的直線方程為

解①②得

∵橢圓中心O(0,0)關(guān)于直線的對稱點(diǎn)在橢圓C的右準(zhǔn)線上,

, …………………(分)

∵直線過橢圓焦點(diǎn),∴該焦點(diǎn)坐標(biāo)為(2,0),

,

故橢圓C的方程為  ③…………………12分)

20.點(diǎn)評:本小題考查二次函數(shù)、等差數(shù)列、數(shù)列求和、不等式等基礎(chǔ)知識和基本的運(yùn)算技能,考查分析問題的能力和推理能力。

解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得

a=3 ,  b=-2, 所以  f(x)=3x2-2x.

又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.

當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-

=6n-5.

當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

(Ⅱ)由(Ⅰ)

得知,

故Tn

(1-

因此,要使(1-)<)成立的m,必須且僅須滿足,即m≥10,所以滿足要求的最小正整數(shù)m為10.

21.(1)   

        

   

 (2)由

    令得,增區(qū)間為,

減區(qū)間為

   

2

 

+

0

0

+

 

    由表可知:當(dāng)時(shí),

   

        解得:

    的取值范圍為

22.(1)

   (2)

 

 


同步練習(xí)冊答案