[必做題]第22.23題.每小題10分.共計20分.請在答題卡指定區(qū)域內(nèi)作答.解答應(yīng)寫出文字說明,證明過程或演算步驟. 查看更多

 

題目列表(包括答案和解析)


【必做題】第22題和第23題為必做題, 每小題10分,共20分.要寫出必要的文字說明或演算步驟.
有甲、乙兩個箱子,甲箱中有張卡片,其中張寫有數(shù)字,張寫有數(shù)字張寫有數(shù)字;乙箱中也有張卡片,其中張寫有數(shù)張寫有數(shù)字,張寫有數(shù)字.
(1)如果從甲、乙箱中各取一張卡片,設(shè)取出的張卡片上數(shù)字之積為,求
分布列及數(shù)學(xué)期望;
(2)如果從甲箱中取一張卡片,從乙箱中取兩張卡片,那么取出的張卡片都寫有
數(shù)字的概率是多少?

查看答案和解析>>

 

【必做題】第22題和第23題為必做題, 每小題10分,共20分.要寫出必要的文字說明或演算步驟.

 

有甲、乙兩個箱子,甲箱中有張卡片,其中張寫有數(shù)字張寫有數(shù)字,張寫有數(shù)字;乙箱中也有張卡片,其中張寫有數(shù)字,張寫有數(shù)字,張寫有數(shù)字.

(1)如果從甲、乙箱中各取一張卡片,設(shè)取出的張卡片上數(shù)字之積為,求

    分布列及的數(shù)學(xué)期望;

(2)如果從甲箱中取一張卡片,從乙箱中取兩張卡片,那么取出的張卡片都寫有

    數(shù)字的概率是多少?

 

 

查看答案和解析>>


【必做題】第22題和第23題為必做題, 每小題10分,共20分.要寫出必要的文字說明或演算步驟.
有甲、乙兩個箱子,甲箱中有張卡片,其中張寫有數(shù)字,張寫有數(shù)字張寫有數(shù)字;乙箱中也有張卡片,其中張寫有數(shù),張寫有數(shù)字張寫有數(shù)字.
(1)如果從甲、乙箱中各取一張卡片,設(shè)取出的張卡片上數(shù)字之積為,求
分布列及數(shù)學(xué)期望;
(2)如果從甲箱中取一張卡片,從乙箱中取兩張卡片,那么取出的張卡片都寫有
數(shù)字的概率是多少?

查看答案和解析>>

【必做題】第22題、第23題,每題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出
文字說明、證明過程或演算步驟。http://www.mathedu.cn
22. (本小題滿分10分)
如圖,在正四棱柱中,,點的中點,點上,設(shè)二面角的大小為
(1)當(dāng)時,求的長;
(2)當(dāng)時,求的長。

查看答案和解析>>

 [選做題]本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答。若多做,則按作答的前兩題評分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。

A. 選修4-1:幾何證明選講

 

AB是圓O的直徑,D為圓O上一點,過D作圓O的切線交AB延長線于點C,若DA=DC,求證:AB=2BC。

B. 選修4-2:矩陣與變換

 

在平面直角坐標(biāo)系xOy中,已知點A(0,0),B(-2,0),C(-2,1)。設(shè)k為非零實數(shù),矩陣M=,N=,點A、B、C在矩陣MN對應(yīng)的變換下得到點分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值。

C. 選修4-4:坐標(biāo)系與參數(shù)方程

 

在極坐標(biāo)系中,已知圓ρ=2cosθ與直線3ρcosθ+4ρsinθ+a=0相切,求實數(shù)a的值。

 

D. 選修4-5:不等式選講

 

設(shè)a、b是非負(fù)實數(shù),求證:。

 

[必做題]第22題、第23題,每題10分,共計20分。請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟。

 

 

查看答案和解析>>

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.       2.1    3.-2     4.      5. (1)(2)

6. 4    7.甲       8.    9.9      10.

11.-2       12.       13.2       14. 2

二、解答題:(本大題共6小題,共90分.)

15.(本小題滿分14分)

解:(1)∵

        …………………………………………5分

(2)∵

…………………………………………7分

         ……………………………………9分

或7                   ………………………………14分

16.(本小題滿分14分)

(1)證明:E、P分別為AC、A′C的中點,

        EP∥A′A,又A′A平面AA′B,EP平面AA′B

       ∴即EP∥平面A′FB                  …………………………………………5分

(2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

   ∴BC⊥A′E,∴BC⊥平面A′EC

     BC平面A′BC

   ∴平面A′BC⊥平面A′EC             …………………………………………9分

(3)證明:在△A′EC中,P為A′C的中點,∴EP⊥A′C,

  在△A′AC中,EP∥A′A,∴A′A⊥A′C

      由(2)知:BC⊥平面A′EC   又A′A平面A′EC

      ∴BC⊥AA′

      ∴A′A⊥平面A′BC                   …………………………………………14分

 

17.(本小題滿分15分)

解:(1)取弦的中點為M,連結(jié)OM

由平面幾何知識,OM=1

                   …………………………………………3分

解得:,               ………………………………………5分

∵直線過F、B ,∴     …………………………………………6分

(2)設(shè)弦的中點為M,連結(jié)OM

              ……………………………………9分

解得                       …………………………………………11分

                    …………………………………………15分

(本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

18.(本小題滿分15分)

(1)延長BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=

      ∵S△APQ=,∴

      ∴             …………………………………………7分

(2)

          =?

…………………………………………12分

    當(dāng),

,            

…………………………………………15分

19.(本小題滿分16分)

解(1)證:       由  得

上點處的切線為,即

又在上點處切線可計算得,即

∴直線、都相切,且切于同一點()      …………………5分

(2)

      …………………7分

   ∴上遞增

   ∴當(dāng)……………10分

(3)

設(shè)上式為 ,假設(shè)取正實數(shù),則?

當(dāng)時,遞減;

當(dāng),遞增. ……………………………………12分

                

    

∴不存在正整數(shù),使得

                  …………………………………………16分

20.(本小題滿分16分)

解:(1),

對一切恒成立

的最小值,又 ,

                       …………………………………………4分

(2)這5個數(shù)中成等比且公比的三數(shù)只能為

只能是,

      …………………………8分

,顯然成立             ……………………………………12分

當(dāng)時,

使不等式成立的自然數(shù)n恰有4個的正整數(shù)p值為3

                          ……………………………………………16分

 

 

泰州市2008~2009學(xué)年度第二學(xué)期期初聯(lián)考

高三數(shù)學(xué)試題參考答案

附加題部分

21.(選做題)(從A,B,C,D四個中選做2個,每題10分,共20分.)

A.解:(1)

∴AB=CD                            ……………………………………4分

(2)由相交弦定理得

2×1=(3+OP)(3-OP)

,∴               ……………………………………10分

B.解:依題設(shè)有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

C.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.(1),,由

所以

為圓的直角坐標(biāo)方程.  ……………………………………3分

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點的直線的直角坐標(biāo)方程為. …………………………10分

D.證明:(1)因為

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,,……………………………………8分

    三式相加即得……………………………10分

22.(必做題)(本小題滿分10分)

解:(1)記“恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)”為事件的, 則其概率為                …………………………………………4分

    答:恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)的概率為

(2)隨機(jī)變量

                        ……………………5分

                   …………………………6分

                  ………………………………7分

∴隨機(jī)變量的分布列為

2

3

4

P

 

                    …………………………10分

23.(必做題)(本小題滿分10分)

(1),,,

,

              ……………………………………3分

(2)平面BDD1的一個法向量為

設(shè)平面BFC1的法向量為

得平面BFC1的一個法向量

∴所求的余弦值為                     ……………………………………6分

(3)設(shè)

,由

,

當(dāng)時,

當(dāng)時,∴   ……………………………………10分

 

 


同步練習(xí)冊答案