C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

D

B

C

B

C

A

C

A

B

C

D

二、填空題

13. 192     14. 15      15.     16. ②③⑤

三、解答題

17. 解:(Ⅰ)設三角形三內(nèi)角A、B、C對應的三邊分別為a, b, c,

,∴,由正弦定理有,………………3分

又由余弦定理有,∴,即,

所以為Rt,且. ………………6分

(Ⅱ)又, 令a=4k, b=3k (k>0). ………………8分

,∴三邊長分別為a=4,b=3,c=5. ………………10分

18. (Ⅰ)如圖,首先從五種不同顏色的鮮花中任選四種共種,

用四種顏色鮮花布置可分兩種情況:區(qū)域A、D同色和區(qū)域B、E同色,

皆有種,………………3分

故恰用四種不同顏色的鮮花布置的不同擺放方案共有種. ………………6分

(Ⅱ)設M表示事件“恰有兩個區(qū)域用紅色鮮花”,

如圖,當區(qū)域A、D同色時,共有種;

當區(qū)域A、D不同色時,共有種;

因此,所有基本事件總數(shù)為:180+240=420種. ………………8分

它們是等可能的.又因為A、D為紅色時,共有種;

B、E為紅色時,共有種;

因此,事件M包含的基本事件有:36+36=72種.………………10分

所以,恰有兩個區(qū)域用紅色鮮花的概率=.………………12分

19. (Ⅰ)延長至M,使,連,則,連,則或其補角就是異面直線所成角(設為),………………2分

不妨設AA1=AB=1,則在中,,

所以

故異面直線所成角的余弦值為.………………6分

   (Ⅱ)是正三棱柱,平面,

   平面,平面平面

   過點于點,則平面,

,由三垂線定理得,

故∠為二面角的平面角. ………………9分

不妨設AA1=AB=2,

,在中,.

    二面角的正弦值為.………………12分

20. 解:(Ⅰ)由已知,當時,   ……………… 2分

.     經(jīng)檢驗時也成立. ………………4分

,得,∴p=.

.……………… 6分

(Ⅱ)由(1)得,.       ……………… 7分

2  ;              ①

.    ②   ………………9分

②-①得,

.       ………………12分

21. 解:(Ⅰ)f′(x)=3ax2+2bx-3,依題意,f′(1)=f′(-1)=0,………………2分

        即   解得a=1,b=0.∴f(x)=x3-3x. ………………4分

   (Ⅱ)f′(x)=3x2-3=3(x+1)(x-1),

         ∵曲線方程為y=x3-3x,∴點A(1,m)不在曲線上.

設切點為M(x0,y0),則點M的坐標滿足

,故切線的斜率為,

整理得.………………7分

∵過點A(1,m)可作曲線的三條切線,

∴關于x0的方程=0有三個實根.

設g(0)= ,則g′(x0)=6

由g′(x0)=0,得x0=0或x0­=1. ………………9分

∴g(x0)在(-∞,0),(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.

∴函數(shù)g(x0)= 的極值點為x0=0,x0=1.

∴關于x0方程=0有三個實根的充要條件是

解得-3<m<-2.

故所求的實數(shù)a的取值范圍是-3<m<-2. ………………12分

22. 解:(Ⅰ)∵,

設O關于直線 的對稱點為的橫坐標為 ,………………2分

又直線得線段的中點坐標(1,-3).

∴橢圓方程為.………………5分

(Ⅱ)設點,當直線l的斜率存在時,

則直線l的方程為,………6分

代入得:

, ……①

,①可化為:

,………………8分

由已知,有

,

………………10分

同理

解得 ,

……………………11分

故直線ME垂直于x軸,由橢圓的對稱性知點M、E關于x軸對稱,而點B在x軸上,

∴|BM|=|BE|,即△BME為等腰三角形. 

當直線l的斜率不存在時,結(jié)論顯然成立.……………………12分

 

 

 

 


同步練習冊答案