.解得或 查看更多

 

題目列表(包括答案和解析)

解:因為有負根,所以在y軸左側(cè)有交點,因此

解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

查看答案和解析>>

某旅行社組團去風景區(qū)旅游,若每團人數(shù)在30人或30人以下,飛機票每張收費900元;若每團人數(shù)多于30人,則給予優(yōu)惠,每多1人,機票每張減少10元,直至每張降為450元為止,每團乘飛機,旅行社需付給航空公司包機費1500元.

(1)寫出飛機票的價格關于人數(shù)的函數(shù);

(2)每團人數(shù)為多少時,旅行社可獲得最大利潤?

查看答案和解析>>

解答題:解答應寫出文字說明、證明過程或演算步驟.

美國藍球職業(yè)聯(lián)賽(NBA)某賽季的總決賽在湖人隊與活塞隊之間進行,比賽采取七局四勝制,即若有一隊勝四場,則此隊獲勝且比賽結(jié)束.因兩隊實力非常接近,在每場比賽中每隊獲勝是等可能的.據(jù)資料統(tǒng)計,每場比賽組織者可獲門票收入100萬美元.求在這次總決賽過程中,比賽組織者獲得門票收入(萬美元)的概率分布及數(shù)學期望

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟

已知函數(shù),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟

一個計算器裝置有一個數(shù)據(jù)入口A和一輸出運算結(jié)果的出口B,將自然數(shù)列{n}(n≥1)中的各數(shù)依次輸入A口,從B口得到輸出的數(shù)列{an},結(jié)果表明:①從A口輸入n=1時,從B口得;②當n≥2時,從A口輸入n,從B口得的結(jié)果an是將前一結(jié)果an-1先乘以自然數(shù)列{n}中的第n-1個奇數(shù),再除以自然數(shù)列{n}中的第n+1個奇數(shù),試問:

(1)

從A口輸入2和3時,從B口分別得到什么數(shù)?

(2)

從A口輸入100時,從B口得到什么數(shù)?說明理由.

查看答案和解析>>


同步練習冊答案