又 .,在上的最小值為2, ---------------8分 查看更多

 

題目列表(包括答案和解析)

函數是定義在上的奇函數,且。

(1)求實數a,b,并確定函數的解析式;

(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;

(3)寫出的單調減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在上的奇函數,且

解得,

(2)中,利用單調性的定義,作差變形判定可得單調遞增函數。

(3)中,由2知,單調減區(qū)間為,并由此得到當,x=-1時,,當x=1時,

解:(1)是奇函數,。

,,………………2分

,又,,

(2)任取,且,

,………………6分

,,,,

在(-1,1)上是增函數�!�8分

(3)單調減區(qū)間為…………………………………………10分

當,x=-1時,,當x=1時,。

 

查看答案和解析>>


同步練習冊答案