題目列表(包括答案和解析)
函數是定義在
上的奇函數,且
。
(1)求實數a,b,并確定函數的解析式;
(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;
(3)寫出的單調減區(qū)間,并判斷
有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
【解析】本試題主要考查了函數的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數是定義在
上的奇函數,且
。
解得,
(2)中,利用單調性的定義,作差變形判定可得單調遞增函數。
(3)中,由2知,單調減區(qū)間為,并由此得到當,x=-1時,
,當x=1時,
解:(1)是奇函數,
。
即,
,
………………2分
,又
,
,
,
(2)任取,且
,
,………………6分
,
,
,
,
,
在(-1,1)上是增函數�!�8分
(3)單調減區(qū)間為…………………………………………10分
當,x=-1時,,當x=1時,
。
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com