(III)記 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知直線過拋物線的焦點且與拋物線相交于兩點,自向準線作垂線,垂足分別為 

(Ⅰ)求拋物線的方程;

(Ⅱ)證明:無論取何實數(shù)時,,都是定值;

(III)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小題滿分12分)

已知直線過拋物線的焦點且與拋物線相交于兩點,自向準線作垂線,垂足分別為

(Ⅰ)求拋物線的方程;

(Ⅱ)證明:無論取何實數(shù)時,,都是定值;

(III)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.

查看答案和解析>>

(2012福建理)受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān),某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機抽取50輛,統(tǒng)計書數(shù)據(jù)如下:

品牌

首次出現(xiàn)故障時間

轎車數(shù)量(輛)

2

3

45

5

45

輛利潤(萬元)

1

2

3

將頻率視為概率,解答下列問題:

(I)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;

(II)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤為,生產(chǎn)一輛乙品牌轎車的利潤為,分別求的分布列;

(III)該廠預(yù)計今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟效益的角度考慮,你認為應(yīng)該產(chǎn)生哪種品牌的轎車?說明理由.

查看答案和解析>>

(本小題滿分12分)

已知直線過拋物線的焦點且與拋物線相交于兩點,自向準線作垂線,垂足分別為 
(Ⅰ)求拋物線的方程;
(Ⅱ)證明:無論取何實數(shù)時,,都是定值;
(III)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.

查看答案和解析>>

(04年全國卷III文)記函數(shù)的反函數(shù)為,則(   )

     A. 2          B.       C. 3      D. 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6AABCBD   7―12ACDCBD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.-8  15.    16.6

三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:當(dāng)

       故   1分

       因為   當(dāng)

       當(dāng)

       故上單調(diào)遞減。   5分

   (II)解:由題意知上恒成立,

       即上恒成立。   7分

       令

       因為   9分       

       故上恒成立等價于

          11分

       解得   12分

19.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點,

       連結(jié)O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

    <dl id="ttsth"><pre id="ttsth"><strong id="ttsth"></strong></pre></dl>
    <optgroup id="ttsth"></optgroup>
  •        同上,   8分

          

          

          

           設(shè)面OAC的法向量為

          

           得

           故

           所以二面角O―AC―B的大小為   12分

    20.(本小題滿分12分)

       (I)解:設(shè)次將球擊破,

        則   5分

       (II)解:對于方案甲,積分卡剩余點數(shù)

           由已知可得

          

          

          

           故

           故   8分

           對于方案乙,積分卡剩余點數(shù)

           由已知可得

          

          

          

          

           故

           故   11分

           故

           所以選擇方案甲積分卡剩余點數(shù)最多     12分

    21.(本小題滿分12分)

           解:依題意設(shè)拋物線方程為,

           直線

           則的方程為

          

           因為

           即

           故

       (I)若

          

           故點B的坐標為

           所以直線   5分

       (II)聯(lián)立

          

           則

           又   7分

           故   9分

           因為成等差數(shù)列,

           所以

           故

           將代入上式得

           。   12分

    22.(本小題滿分12分)

       (I)解:

           又

           故   2分

           而

           當(dāng)

           故為增函數(shù)。

           所以的最小值為0   4分

       (II)用數(shù)學(xué)歸納法證明:

           ①當(dāng)

           又

           所以為增函數(shù),即

           則

           所以成立       6分

           ②假設(shè)當(dāng)成立,

           那么當(dāng)

           又為增函數(shù),

          

           則成立。

           由①②知,成立   8分

       (III)證明:由(II)

           得

           故   10分

           則

          

           所以成立   12分

     

     

     

     

     


    同步練習(xí)冊答案