當時符合上式 ------------12分 查看更多

 

題目列表(包括答案和解析)

設a、b∈R+,a≠b,x,y∈(0,+∞),則數(shù)學公式,當且僅當數(shù)學公式時,上式取等號,利用以上結論,可以得到函數(shù)數(shù)學公式的最小值為


  1. A.
    169
  2. B.
    121
  3. C.
    25
  4. D.
    16

查看答案和解析>>

已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

(Ⅰ)若 ,是否存在,有?請說明理由;

(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.

【解析】第一問中,由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)中當時,則

,其中是大于等于的整數(shù)

反之當時,其中是大于等于的整數(shù),則

顯然,其中

滿足的充要條件是,其中是大于等于的整數(shù)

(3)中設為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

為偶數(shù)時,式不成立。由式得,整理

時,符合題意。當,為奇數(shù)時,

結合二項式定理得到結論。

解(1)由,整理后,可得,為整數(shù)不存在、,使等式成立。

(2)當時,則,其中是大于等于的整數(shù)反之當時,其中是大于等于的整數(shù),則

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)設為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

為偶數(shù)時,式不成立。由式得,整理

時,符合題意。當為奇數(shù)時,

   由,得

為奇數(shù)時,此時,一定有使上式一定成立。為奇數(shù)時,命題都成立

 

查看答案和解析>>

(本小題滿分14分)

已知是定義在上的偶函數(shù),當時,

(1)求函數(shù)的解析式;

(2)若不等式的解集為,求的值.

 

查看答案和解析>>

(本小題滿分13分)

設函數(shù)對任意的實數(shù),都有,且當時,。

(1)若時,求的解析式;

(2)對于函數(shù),試問:在它的圖象上是否存在點,使得函數(shù)在點處的切線與平行。若存在,那么這樣的點有幾個;若不存在,說明理由。

(3)已知,且 ,記,求證: 。

 

查看答案和解析>>

(12分)已知是定義在R上的函數(shù),對于任意的,,且當時,

(1)求的解析式;

(2)畫出函數(shù)的圖象,并指出的單調區(qū)間及在每個區(qū)間上的增減性;

(3)若函數(shù)fx)在區(qū)間[-1,a-2]上單調遞增,試確定a的取值范圍.

 

查看答案和解析>>


同步練習冊答案