答卷前將密封線內(nèi)的項目填寫清楚.題號一二 三總分1--891011121314151617181920分數(shù) 得分評卷人 查看更多

 

題目列表(包括答案和解析)

如圖,下面的表格內(nèi)的數(shù)值填寫規(guī)則如下:先將第1行的所有空格填上1;再把一個首項為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);其它空格按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)設第2行的數(shù)依次為b1,b2,…,bn,試用n,q表示b1+b2+…+bn的值;
(2)設第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對于任意非零實數(shù)q,c1+c3>2c2;
(3)能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項c1,c2,…,cm(m≥3)成為等比數(shù)列?若能找到,m的值有多少個?若不能找到,說明理由.

查看答案和解析>>

如圖是將二進制數(shù)11111(2)化為十進制數(shù)的一個程序框圖.
(1)將判斷框內(nèi)的條件補充完整;
(2)請用直到型循環(huán)結構改寫流程圖.

查看答案和解析>>

(2008•成都二模)(新華網(wǎng))反興奮劑的大敵、服藥者的寵兒--HGH(人體生長激素),有望在8月的北京奧運會上首次“伏法”.據(jù)悉,國際體育界研究近10年仍不見顯著成效的HGH檢測,日前已取得新的進展,新生產(chǎn)的檢測設備有希望在北京奧運會上使用.若組委會計劃對參加某項田徑比賽的120名運動員的血樣進行突擊檢查,采用如下化驗
方法:將所有待檢運動員分成若干小組,每組m個人,再把每個人的血樣分成兩份,化驗時將每個小組內(nèi)的m個人的血樣各一份混合在一起進行化驗,若結果中不含HGH成分,那么該組的m個人只需化驗這一次就算檢驗合格;如果結果中含有HGH成分,那么需要對該組進行再次檢驗,即需要把這m個人的另一份血樣逐個進行化驗,才能最終確定是否檢驗合格,這時,對這m個人一共需要進行m+1次化驗.假定對所有人來說,化驗結果中含有HGH成分的概率均為
110
.當m=3時,
(1)求一個小組只需經(jīng)過一次檢驗就合格的概率;
(2)設一個小組的檢驗次數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

組委會計劃對參加某項田徑比賽的12名運動員的血樣進行突擊檢驗,檢查是否含有興奮劑HGH成分.采用如下檢測方法:將所有待檢運動員分成4個小組,每組3個人,再把每個人的血樣分成兩份,化驗室將每個小組內(nèi)的3個人的血樣各一份混合在一起進行化驗,若結果中不含HGH成分,那么該組的3個人只需化驗這一次就算合格;如果結果中含HGH成分,那么需對該組進行再次檢驗,即需要把這3個人的另一份血樣逐個進行化驗,才能最終確定是否檢驗合格,這時,對這3個人一共進行了4次化驗,假定對所有人來說,化驗結果中含有HGH成分的概率均為
110

(Ⅰ)求一個小組只需經(jīng)過一次檢驗就合格的概率;
(Ⅱ)設一個小組檢驗次數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學期望;
(Ⅲ)至少有兩個小組只需經(jīng)過一次檢驗就合格的概率.(精確到0.01,參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

將[0,1]內(nèi)的均勻隨機數(shù)轉化為[-2,6]內(nèi)的均勻隨機數(shù),需要實施的變換為(  )

A.aa1*8                               B.aa1*8+2

C.aa1*8-2                             D.aa1*6

 

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D      2.A      3.B      4.C       5.D      6.B     7.C      8. A

二、填空題(本大題共6小題,每小題5分,共30分)

9.點               10.               11. 6 , 60

12.                13.                   14. ,

注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.

三、解答題(本大題共6小題,共80分)

15. (本小題滿分13分)

解:(Ⅰ)設等比數(shù)列的公比為,依題意有,    (1)

,將(1)代入得.所以.  ……………3分

于是有                             ………………4分

解得                             ………………6分

是遞增的,故.                   ………………7分

所以.                                         ………………9分

   (Ⅱ).                                …………………11分

.                                       ………………13分

16.(本小題滿分13分)

解:(Ⅰ)在△中,由.

   所以.            …………………5分

(Ⅱ)由.  ………………………………….9分

,=;          ………………………11分

于是有,解得.           ……………………………13分

 

17.(本小題滿分14分)

解法一:(Ⅰ)∵正方形,∴

又二面角是直二面角,

⊥平面.

平面,

.

,是矩形,的中點,

=,=,

=,

⊥平面,

平面,故平面⊥平面.          ……………………5分

 (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作,垂足為,則⊥平面.

        ∴∠與平面所成的角.

∴在Rt△中,=.  

 .                            

與平面所成的角為 .                 ………………………9分

   (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結,則,

        ∴∠為二面角的平面角.                 …………….11分

∵在Rt△中,=,在Rt△中,.

∴在Rt△中,

即二面角的大小為arcsin.    ………………………………14分

解法二:

如圖,以為原點建立直角坐標系

(0,0,0),(0,2,0),

(0,2,2),,,0),

,0,0).

   (Ⅰ) =(,,0),=(,,0),

         =(0,0,2),

?=(,,0)?(,,0)=0,

 ? =(,,0)?(0,0,2)= 0.

,,

⊥平面,又平面,故平面⊥平面.     ……5分

   (Ⅱ)設與平面所成角為.

        由題意可得=(,,0),=(0,2,2 ),=(,,0).

        設平面的一個法向量為=(,,1),

        由.

          .

與平面所成角的大小為.            ……………..9分

   (Ⅲ)因=(1,-1,1)是平面的一個法向量,

        又⊥平面,平面的一個法向量=(,0,0),

        ∴設的夾角為,得

        ∴二面角的大小為.         ………………………………14分

18. (本小題滿分13分)

解: (Ⅰ)由已知甲射擊擊中8環(huán)的概率為0.2,乙射擊擊中9環(huán)的概率為0.4,則所求事件的概率

       .                                     ………………4分

  (Ⅱ) 設事件表示“甲運動員射擊一次,擊中9環(huán)以上(含9環(huán))”, 記“乙運動員射擊1次,擊中9環(huán)以上(含9環(huán))”為事件,則

.                           ………………………6分

.                          ………………………8分

“甲、乙兩運動員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上(含9環(huán))”包含甲擊中2次、乙擊中1次,與甲擊中1次、乙擊中2次兩個事件,顯然,這兩個事件互斥.

甲擊中2次、乙擊中1次的概率為

;            ……………………..10分

甲擊中1次、乙擊中2次的概率為

.             …………………12分

所以所求概率為.                      

答: 甲、乙兩運動員各自射擊兩次,這4次射擊中恰有3次擊中9環(huán)以上的概率為.  ……….13分

                                                      

19.(本小題滿分14分)

解: (Ⅰ) 由已知 , 又圓心,則 .故   .

  所以直線垂直.                        ………………………3分

        (Ⅱ) 當直線軸垂直時,易知符合題意;        ………………4分

當直線與軸不垂直時,設直線的方程為.   …………5分

由于,所以

,解得.         ………………7分

故直線的方程為.          ………………8分

         (Ⅲ)當軸垂直時,易得,,又

,故.                    ………………10分

的斜率存在時,設直線的方程為,代入圓的方程得

.則

,即,

.又由,

.

.

綜上,的值與直線的斜率無關,且.    …………14分

另解一:連結,延長交于點,由(Ⅰ)知.又,

故△∽△.于是有.

               ………………………14分

另解二:連結并延長交直線于點,連結由(Ⅰ)知,

所以四點

同步練習冊答案