如圖:已知長方體的底面是邊長為4的正方形.高為的中點.交于 查看更多

 

題目列表(包括答案和解析)

(12分)如圖:已知長方體的底面是邊長為4的正方形,高的中點

(1)求證:

(2)求二面角的余弦值

查看答案和解析>>

(12分)如圖:已知長方體的底面是邊長為4的正方形,高的中點,交于

     (I)求證:;

     (Ⅱ)求證:;

     (Ⅲ)求三棱錐的體積

 

查看答案和解析>>

如圖:已知長方體的底面是邊長為的正方形,高,的中點,交于點.
(1)求證:平面;
(2)求證:∥平面;
(3)求三棱錐的體積.

查看答案和解析>>

如圖:已知長方體的底面是邊長為的正方形,高,的中點,交于點.
(1)求證:平面;
(2)求證:∥平面;
(3)求三棱錐的體積.

查看答案和解析>>

如圖,已知多面體的底面是邊長為的正方形,底面,,且

(Ⅰ )求多面體的體積;

(Ⅱ )求證:平面EAB⊥平面EBC;

(Ⅲ)記線段CB的中點為K,在平面內(nèi)過K點作一條直線與平面平行,要求保留作圖痕跡,但不要求證明.

 

 

查看答案和解析>>

一、選擇題(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

D

B

D

A

B

B

A

二、填空題(每小題4分,共24分)

11.;    12.;     13.;    14.    15.    16.1

三、解答題(本大題共6小題,共76分,以下各題為累計得分,其他解法請相應(yīng)給分)

17.解(I)由題意得

(Ⅱ)

于是

18.解:(I)任取3個球的基本情況有(1,2,3),(1,2,3),(1,2,4),(1,2,5),(1,3,3)(1,3,4)

(1,3,5),(1,3,4),(1,3,5),(1,4,5),(2,3,3),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(2

,4,5),(3,3,4),(3,3,5),(3,4,5),(3,4,5)共20種,

 其中最大編號為4的有(1,2,4),(1,3,4),(1,3,4),(2,3,4),(2,3,4),

(3,3,4)共6種,所以3個球中最大編號為4的概率為

(Ⅱ)3個球中有1個編號為3的有(1,2,3),(1,2,3),(1,3,4),(1,3,5),(1,

3,4),(1,3,5),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(3,4,5),(3

4,5)共12種

有2個編號為3的有(1,3,3),(2,3,3),(3,3,4),(3,3,5)共4種

所以3個球中至少有個編號為3的概率是

19.解:(I)是長方體,平面,又,

是正方形。,又,

(Ⅱ)

(Ⅲ)連結(jié)

又有上知

由題意得

于是可得上的高為6

20.解:(I)

,得

①若,則當(dāng)。當(dāng)時,

內(nèi)是增函數(shù),在內(nèi)是減函數(shù),

②若則當(dāng)時,當(dāng)時,

內(nèi)是增函數(shù),在內(nèi)是減函數(shù)

(Ⅱ)當(dāng)時,內(nèi)是增函數(shù),

內(nèi)是增函數(shù)。

由題意得  解得

當(dāng)時,內(nèi)是增函數(shù),內(nèi)是增函數(shù)。

由題意得 解得

綜上知實數(shù)的取值范圍為

(21)解:(1)設(shè)的公比為,由題意有

解得(舍)

(Ⅱ),是以2為首項,-1為公差的等差數(shù)列

(Ⅲ)顯然

當(dāng)時,當(dāng)時,

當(dāng)時,故當(dāng)

22.解:(I)由題意知

設(shè)橢圓中心關(guān)于直線的對稱點為。

于是方程為

得線段的中點為(2,-1),從而的橫坐標為4,

橢圓的方程為

(Ⅱ)由題意知直線存在斜率,設(shè)直線的方程為代入

整理得

不合題意。

設(shè)點

由①知

直線方程為

代入

整理得

再將代入計算得

直線軸相交于定點(1,0)

 

 

 

 

 


同步練習(xí)冊答案