題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題(每小題5分,共50分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
C
B
A
D
B
D
A
B
B
A
二、填空題(每小題4分,共24分)
11.; 12.; 13.; 14. 15. 16.1
三、解答題(本大題共6小題,共76分,以下各題為累計(jì)得分,其他解法請(qǐng)相應(yīng)給分)
17.解(I)由題意得即
又
(Ⅱ)
于是
又又
又
18.解:(I)任取3個(gè)球的基本情況有(1,2,3),(1,2,3),(1,2,4),(1,2,5),(1,3,3)(1,3,4)
(1,3,5),(1,3,4),(1,3,5),(1,4,5),(2,3,3),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(2
,4,5),(3,3,4),(3,3,5),(3,4,5),(3,4,5)共20種,
其中最大編號(hào)為4的有(1,2,4),(1,3,4),(1,3,4),(2,3,4),(2,3,4),
(3,3,4)共6種,所以3個(gè)球中最大編號(hào)為4的概率為
(Ⅱ)3個(gè)球中有1個(gè)編號(hào)為3的有(1,2,3),(1,2,3),(1,3,4),(1,3,5),(1,
3,4),(1,3,5),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(3,4,5),(3,
4,5)共12種
有2個(gè)編號(hào)為3的有(1,3,3),(2,3,3),(3,3,4),(3,3,5)共4種
所以3個(gè)球中至少有個(gè)編號(hào)為3的概率是
19.解:(I)是長(zhǎng)方體,平面,又面,
又是正方形。,又,面
(Ⅱ)
(Ⅲ)連結(jié)有
又有上知,
由題意得
于是可得上的高為6
20.解:(I)‘
又令,得
①若,則當(dāng)或時(shí)。當(dāng)時(shí),
在和內(nèi)是增函數(shù),在內(nèi)是減函數(shù),
②若則當(dāng)或時(shí),當(dāng)時(shí),
在和內(nèi)是增函數(shù),在內(nèi)是減函數(shù)
(Ⅱ)當(dāng)時(shí),在和內(nèi)是增函數(shù),故
在內(nèi)是增函數(shù)。
由題意得 解得
當(dāng)時(shí),在和內(nèi)是增函數(shù),在內(nèi)是增函數(shù)。
由題意得 解得
綜上知實(shí)數(shù)的取值范圍為
(21)解:(1)設(shè)的公比為,由題意有
解得或(舍)
(Ⅱ),是以2為首項(xiàng),-1為公差的等差數(shù)列
(Ⅲ)顯然
又當(dāng)時(shí),當(dāng)時(shí),
當(dāng)時(shí),故當(dāng)或時(shí)
22.解:(I)由題意知故
又設(shè)橢圓中心關(guān)于直線的對(duì)稱點(diǎn)為。
于是方程為
由得線段的中點(diǎn)為(2,-1),從而的橫坐標(biāo)為4,
故橢圓的方程為
(Ⅱ)由題意知直線存在斜率,設(shè)直線的方程為代入并
整理得
由得又不合題意。
或
設(shè)點(diǎn)則
由①知
直線方程為
令得將代入
整理得
再將代入計(jì)算得
直線與軸相交于定點(diǎn)(1,0)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com