18. 某大學宿舍共有7個同學.其中4個同學從來沒有參加過社會實踐活動.3個同學曾經(jīng)參加過社會實踐活動.(Ⅰ)現(xiàn)從該宿舍中任選2個同學參加一項社會實踐活動.求恰好選到1個曾經(jīng)參加過社會實踐活動的同學的概率,(Ⅱ)若從該宿舍中任選2個同學參加社會實踐活動.求活動結束后.該宿舍至少有3個同學仍然沒有參加過社會實踐活動的概率. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

    某大學畢業(yè)生參加一個公司的招聘考試,考試分筆試和面試兩個環(huán)節(jié),筆試有A、B兩個題目,該學生答對A、B兩題的概率分別為,兩題全部答對方可進入面試.面試要回答甲、乙兩個問題,該學生答對這兩個問題的概率均為,至少答對一題即可被聘用(假設每個環(huán)節(jié)的每個問題回答正確與否是相互獨立的).

   (I)求該學生被公司聘用的概率;

   (II)設該學生答對題目的個數(shù)為,求的分布列和數(shù)學期望.

 

查看答案和解析>>

(本小題滿分12分)

某項選拔共有三輪考核,每輪設有一個問題,能正確回答問題者進入下一輪考試,否則即被淘汰,已知某選手能正確回答第一、二、三輪的問題的概率分別為、、,且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手被淘汰的概率;

(Ⅱ)該選手在選拔中回答問題的個數(shù)記為ξ,求隨機變量ξ的分布列與數(shù)數(shù)期望.(注:本小題結果可用分數(shù)表示)

 

查看答案和解析>>

(本小題滿分12分)

某市地鐵全線共有四個車站,甲、乙兩人同時在地鐵第一號車站(首發(fā)站)乘車.假設每人自第2號車站開始,在每個車站下車是等可能的。約定用有序實數(shù)對表示“甲在號車站下車,乙在號車站下車”.

(1)用有序實數(shù)對把甲、乙兩人下車的所有可能的結果列舉出來;

(2)求甲、乙兩人同在第3號車站下車的概率;

(3)求甲、乙兩人在不同的車站下車的概率.

 

查看答案和解析>>

(本小題滿分12分)

某大學高等數(shù)學老師上學期分別采用了兩種不同的教學方式對甲、乙兩個大一新生班進行教改試驗(兩個班人數(shù)均為60人,入學數(shù)學平均分數(shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣)。現(xiàn)隨機抽取甲、乙兩班各20名同學的上學期數(shù)學期末考試成績,得到莖葉圖如下:

(Ⅰ)依莖葉圖判斷哪個班的平均分高?

(Ⅱ)從乙班這20名同學中隨機抽取兩名高等數(shù)學成績不得低于85分的同學,求成績?yōu)?0分的同學被抽中的概率;

(Ⅲ)學校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013042219471901602039/SYS201304221948097816603074_ST.files/image003.png">列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成績優(yōu)秀與教學方式有關?”

 

甲班

乙班

合計

優(yōu)秀

 

 

 

不優(yōu)秀

 

 

 

合計

 

 

 

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:其中) 

(Ⅳ)從乙班高等數(shù)學成績不低于85分的同學中抽取2人,成績不低于90分的同學得獎金100元,否則得獎金50元,記為這2人所得的總獎金,求的分布列和數(shù)學期望。

 

查看答案和解析>>

(本小題滿分12分)

    某旅游公司為3個旅游團提供甲、乙、丙、丁4條旅游線路,每個旅游團從中任選一條。

   (I)求3個旅游團選擇3條不同的旅游線路的概率;

   (II)求恰有2條旅游線路沒有被選擇的概率;

   (III)求選擇甲旅游線路的旅游團數(shù)的分布列及數(shù)學期望。

 

查看答案和解析>>

評分說明:

1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內容比照評分參考制訂相應的評分細則.

2.對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

3.解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

4.只給整數(shù)分數(shù).選擇題不給中間分.

一.選擇題

1.D      2.B       3.B       4.C       5.A      6.C       7.C       8.A      9.B       10.D

11.B     12.D

二.填空題

13.300;     14.60;       15.①、②③或①、③②;     16.103.

三.解答題

17.解:

(Ⅰ)因為點的坐標為,根據(jù)三角函數(shù)定義可知,,

所以.     2分

(Ⅱ)∵,∴. 3分

由余弦定理,得 

.   5分

,∴,∴. 7分

,∴.     9分

故BC的取值范圍是.(或寫成) 10分

18.解:

(Ⅰ)記“恰好選到1個曾經(jīng)參加過社會實踐活動的同學”為事件的,    1分

則其概率為.   5分

(Ⅱ)記“活動結束后該宿舍至少有3個同學仍然沒有參加過社會實踐活動”為事件的B,“活動結束后該宿舍仍然有3個同學沒有參加過社會實踐活動”為事件的C,“活動結束后該宿舍仍然有4個同學沒有參加過社會實踐活動”為事件的D. 6分

,.     10分

=+=.      12分

19.證:

(Ⅰ)因為四邊形是矩形∴,

又∵ABBC,∴平面.     2分

平面,∴平面CA1B⊥平面A1ABB1.       3分

解:(Ⅱ)過A1A1DB1BD,連接

平面,

BCA1D

平面BCC1B1,

故∠A1CD為直線與平面所成的角.

       5分

在矩形中,,

因為四邊形是菱形,∠A1AB=60°, CB=3,AB=4,

,. 7分

(Ⅲ)∵,∴平面

到平面的距離即為到平面的距離. 9分

連結交于點O,

∵四邊形是菱形,∴

∵平面平面,∴平面

即為到平面的距離. 11分

,∴到平面的距離為.  12分

 

20.解:

(Ⅰ)由題意,,  1分

又∵數(shù)列為等差數(shù)列,且,∴.   3分

,∴.     5分

(Ⅱ)的前幾項依次為, 7分

=5.    8分

.    12分

21.解:

(Ⅰ)∵,     2分

,得.     4分

的單調增區(qū)間為.  5分

(Ⅱ)當時,恒有||≤2,即恒有成立.

即當時,      6分

由(Ⅰ)知上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

,∴

max.       8分

,∴

min.   10分

.解得

所以,當時,函數(shù)上恒有||≤2成立. 12分

22.解:

(Ⅰ)由已知,,

解得    2分

,∴

軸,.  4分

,

成等比數(shù)列.    6分

(Ⅱ)設,由

得 

   8分

.     10分

,∴.∴,或

∵m>0,∴存在,使得.     12分

 


同步練習冊答案