C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯;≥4,故A錯;由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯.故選C.

查看答案和解析>>

定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )

A B C D

 

查看答案和解析>>

.過點作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

評分說明:

1.本解答給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評分參考制訂相應的評分細則.

2.對計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

3.解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

4.只給整數(shù)分數(shù).選擇題不給中間分.

一.選擇題

1.D      2.B       3.B       4.C       5.A      6.C       7.C       8.A      9.B       10.D

11.B     12.D

二.填空題

13.300;     14.60;       15.①、②③或①、③②;     16.103.

三.解答題

17.解:

(Ⅰ)因為點的坐標為,根據(jù)三角函數(shù)定義可知,

所以.     2分

(Ⅱ)∵,,∴. 3分

由余弦定理,得 

.   5分

,∴,∴. 7分

,∴.     9分

故BC的取值范圍是.(或?qū)懗?sub>) 10分

18.解:

(Ⅰ)記“恰好選到1個曾經(jīng)參加過社會實踐活動的同學”為事件的,    1分

則其概率為.   5分

(Ⅱ)記“活動結(jié)束后該宿舍至少有3個同學仍然沒有參加過社會實踐活動”為事件的B,“活動結(jié)束后該宿舍仍然有3個同學沒有參加過社會實踐活動”為事件的C,“活動結(jié)束后該宿舍仍然有4個同學沒有參加過社會實踐活動”為事件的D. 6分

,.     10分

=+=.      12分

19.證:

(Ⅰ)因為四邊形是矩形∴

又∵ABBC,∴平面.     2分

平面,∴平面CA1B⊥平面A1ABB1.       3分

解:(Ⅱ)過A1A1DB1BD,連接,

平面,

BCA1D

平面BCC1B1,

故∠A1CD為直線與平面所成的角.

       5分

在矩形中,,

因為四邊形是菱形,∠A1AB=60°, CB=3,AB=4,

,. 7分

(Ⅲ)∵,∴平面

到平面的距離即為到平面的距離. 9分

連結(jié),交于點O,

∵四邊形是菱形,∴

∵平面平面,∴平面

即為到平面的距離. 11分

,∴到平面的距離為.  12分

 

20.解:

(Ⅰ)由題意,,  1分

又∵數(shù)列為等差數(shù)列,且,∴.   3分

,∴.     5分

(Ⅱ)的前幾項依次為, 7分

=5.    8分

.    12分

21.解:

(Ⅰ)∵,     2分

,得.     4分

的單調(diào)增區(qū)間為.  5分

(Ⅱ)當時,恒有||≤2,即恒有成立.

即當時,      6分

由(Ⅰ)知上為增函數(shù),在上為減函數(shù),在上為增函數(shù),

,,∴

max.       8分

,,∴

min.   10分

.解得

所以,當時,函數(shù)上恒有||≤2成立. 12分

22.解:

(Ⅰ)由已知,

解得    2分

,∴

軸,.  4分

,

成等比數(shù)列.    6分

(Ⅱ)設、,由

得 

   8分

.     10分

,∴.∴,或

∵m>0,∴存在,使得.     12分

 


同步練習冊答案