題目列表(包括答案和解析)
解:因為有負根,所以在y軸左側有交點,因此
解:因為函數沒有零點,所以方程無根,則函數y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數是奇函數
數字1,2,3,4恰好排成一排,如果數字i(i=1,2,3,4)恰好出現在第i個位置上則稱有一個巧合,求巧合數的分布列。
10-x |
10+x |
10-x |
10+x |
仔細閱讀下面問題的解法:
設A=[0, 1],若不等式21-x-a>0在A上有解,求實數a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調遞減,f(x)max =f(0)=2. ∴實數a的取值范圍為a<2.
研究學習以上問題的解法,請解決下面的問題:
(1)已知函數f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數及反函數的定義域A;
(2)對于(1)中的A,設g(x)=,x∈A,試判斷g(x)的單調性(寫明理由,不必證明);
(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數a的取值范圍。
10-x |
10+x |
10-x |
10+x |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com