(I) 求證:面 查看更多

 

題目列表(包括答案和解析)











(I)求證:;   (Ⅱ)求三棱錐的側(cè)面積。

查看答案和解析>>


(I)求異面直線MN和CD1所成的角;
(II)證明:EF//平面B1CD1.

查看答案和解析>>

(07年天津卷理)(12分)

如圖,在四棱錐中,底面的中點.

    (I)證明:

    (II)證明:平面;

    (III)求二面角的大小.

查看答案和解析>>

(04年廣東卷)(12分)

設(shè)函數(shù)

(I)證明:當(dāng)時,

(II)點(0<x0<1)在曲線上,求曲線上在點處的切線與軸,軸正向所圍成的三角形面積的表達式。(用表示)

查看答案和解析>>

(本小題滿分12分)
在平面直角坐標(biāo)系中,已知動點到點的距離為,到軸的距離為,且
(I)求點的軌跡的方程;
(Ⅱ)若、是(I)中上的兩點,,過、分別作直線的垂線,垂足分別為.證明:直線過定點,且為定值.

查看答案和解析>>

一、1――12    DBDCD    CABAC    DD

二、13.810     14. 6    15. 420    16.

三、解答題

17.解(I)由,得

,得

所以

(II)由正弦定理得

所以的面積

18.解:

      

(I)

6中情況

所以函數(shù)有零點的概率為

(II)對稱軸,則

函數(shù)在區(qū)間上是增函數(shù)的概率為

19.解:(I)證明:由已知得:

  

(II)證明:取AB中點H,連結(jié)GH,FH,

(由線線平行證明亦可)

(III)

20.解(I)

 

(II)

時,是減函數(shù),則恒成立,得

(若用,則必須求導(dǎo)得最值)

21.解:(I)由,得

解得(舍去)

(II)

22.(I)由題設(shè),及,不妨設(shè)點,其中,于點A 在橢圓上,有,即,解得,得

直線AF1的方程為,整理得

由題設(shè),原點O到直線AF1的距離為,即

代入上式并化簡得,得

(II)設(shè)點D的坐標(biāo)為

當(dāng)時,由知,直線的斜率為,所以直線的方程為

,其中,

,的坐標(biāo)滿足方程組

將①式代入②式,得

整理得

于是

由①式得

,將③式和④式代入得

代入上式,整理得

當(dāng)時,直線的方程為的坐標(biāo)滿足方程組

,所以,由知,

,解得,這時,點D的坐標(biāo)仍滿足

綜上,點D的軌跡方程為

 


同步練習(xí)冊答案