(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程, 查看更多

 

題目列表(包括答案和解析)



(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F1和F2是這雙曲線的左、右焦點,點P在這雙曲線上,且|PF1|·|PF2|=32,求
∠F1PF2的大小

查看答案和解析>>

求下列雙曲線的標(biāo)準(zhǔn)方程:
(1)過點(3,-1),漸近線方程是y=±3x;
(2)與橢圓
x2
16
+
y2
64
=1
有相同的焦點,且離心率為
2

查看答案和解析>>

求下列雙曲線的標(biāo)準(zhǔn)方程.
(1)與橢圓
x2
16
+
y2
25
=1
共焦點,且過點(1,
5
2
)
的雙曲線;
(2)與雙曲線
x2
16
-
y2
4
=1
有相同漸近線,且過點(2
2
,1)
的雙曲線.

查看答案和解析>>

求下列雙曲線的標(biāo)準(zhǔn)方程.
(1)與橢圓
x2
16
+
y2
25
=1
共焦點,且過點(1,
5
2
)
的雙曲線;
(2)與雙曲線
x2
16
-
y2
4
=1
有相同漸近線,且過點(2
2
,1)
的雙曲線.

查看答案和解析>>

求下列雙曲線的標(biāo)準(zhǔn)方程.
(1)與橢圓共焦點,且過點的雙曲線;
(2)與雙曲線有相同漸近線,且過點的雙曲線.

查看答案和解析>>

 

一、選擇題:(本大題共10個小題;每小題5分,共50分。)

題 號

1

2

3

4

5

6

7

8

9

10

答 案

C

B

D

C

A

B

C

B

D

B

二、填空題:(本大題共5小題,每小題5分,共25分。)

11. 6ec8aac122bd4f6e     12. 6ec8aac122bd4f6e   13.6ec8aac122bd4f6e    14. 6ec8aac122bd4f6e     15. [-1,1]    6ec8aac122bd4f6e

三、解答題:(本大題共6小題,共75分。)

16.解:(I)∵uv,∴即6ec8aac122bd4f6e------(2分)

    又6ec8aac122bd4f6e6ec8aac122bd4f6e---------(5分)

  (II)由(I)知6ec8aac122bd4f6e------------------------(7分)

    6ec8aac122bd4f6e    6ec8aac122bd4f6e------------------------------------------------(10分)

    又6ec8aac122bd4f6e

    ∴當(dāng)A6ec8aac122bd4f6e=0,即A= 6ec8aac122bd4f6e時,6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e--------------(12分)

17. 解:(Ⅰ)設(shè)A表示甲命中目標(biāo),B表示乙命中目標(biāo),則A、B相互獨立,且P(A)=6ec8aac122bd4f6e,從而甲命中但乙未命中目標(biāo)的概率為

6ec8aac122bd4f6e   ------------------------(5分)

(Ⅱ)設(shè)A1表示甲在兩次射擊中恰好命中k次,B1表示乙有兩次射擊中恰好命中l(wèi)次。依題意有

6ec8aac122bd4f6e

由獨立性知兩人命中次數(shù)相等的概率為

6ec8aac122bd4f6e   

18. 解法一:(1)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM

∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角----------------------(3分)

  平面A1C1CA中,C1C=CA=2,D為C1C的中點

∴CG=2,DC=1 在直角三角形CDG中,

 6ec8aac122bd4f6e  6ec8aac122bd4f6e

即二面角B―A1D―A的大小為6ec8aac122bd4f6e------------------------(6分)

(2)在線段AC上存在一點F,使得EF⊥平面A1BD其位置為AC中點,證明如下:

∵A1B1C1―ABC為直三棱柱 , ∴B1C1//BC

∵由(1)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA

∵EF在平面A1C1CA內(nèi)的射影為C1F ,F(xiàn)為AC中點 ∴C1F⊥A1D   ∴EF⊥A1D -----(9分)

同理可證EF⊥BD,         ∴EF⊥平面A1BD------------------------(11分)

∵E為定點,平面A1BD為定平面,點F唯一------------------------(12分)

解法二:(1)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2 , AC⊥CB  D、E分別為C1C、B1C1的中點, 建立如圖所示的坐標(biāo)系得

C(0,0,0) B(2,0,0)  A(0,2,0)

C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

D(0,0,1)  E(1,0,2)               ------------------------(2分)

6ec8aac122bd4f6e  設(shè)平面A1BD的法向量為6ec8aac122bd4f6e

6ec8aac122bd4f6e 6ec8aac122bd4f6e

平面ACC1A1­的法向量為6ec8aac122bd4f6e=(1,0,0)  ------------------------(4分)

6ec8aac122bd4f6e

即二面角B―A1D―A的大小為6ec8aac122bd4f6e  ------------------------(6分)

(2)在線段AC上存在一點F,設(shè)F(0,y,0)使得EF⊥平面A1BD

欲使EF⊥平面A1BD    由(2)知,當(dāng)且僅當(dāng)6ec8aac122bd4f6e//6ec8aac122bd4f6e---------------(9分)

6ec8aac122bd4f6e 6ec8aac122bd4f6e 

∴存在唯一一點F(0,1,0)滿足條件. 即點F為AC中點------------(12分)

19.解:(1)6ec8aac122bd4f6e,    -----------------(2分)

因為函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e處的切線斜率為-3,

所以6ec8aac122bd4f6e,即6ec8aac122bd4f6e,------------------------(3分)

6ec8aac122bd4f6e6ec8aac122bd4f6e。------------------------(4分)

函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e時有極值,所以6ec8aac122bd4f6e,-------(5分)

解得6ec8aac122bd4f6e,------------------------------------------(7分)

所以6ec8aac122bd4f6e.------------------------------------(8分)

(2)因為函數(shù)6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e上單調(diào)遞增,所以導(dǎo)函數(shù)6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e上的值恒大于或等于零,------------------------------------(10分)

6ec8aac122bd4f6e6ec8aac122bd4f6e,

所以實數(shù)6ec8aac122bd4f6e的取值范圍為6ec8aac122bd4f6e.----------------------------------(13分)

20.解: (1)由6ec8aac122bd4f6e知,數(shù)列{6ec8aac122bd4f6e}為等差數(shù)列,設(shè)其公差為d,則d=6ec8aac122bd4f6e,

6ec8aac122bd4f6e.------------------------(4分)

(2)由6ec8aac122bd4f6e≥0,解得n≤5.故

當(dāng)n≤5時,6ec8aac122bd4f6e=|6ec8aac122bd4f6e|+|6ec8aac122bd4f6e|+…+|6ec8aac122bd4f6e|=6ec8aac122bd4f6e+6ec8aac122bd4f6e+…+6ec8aac122bd4f6e=6ec8aac122bd4f6e;---------------(6分)

當(dāng)n>5時,6ec8aac122bd4f6e=|6ec8aac122bd4f6e|+|6ec8aac122bd4f6e|+…+|6ec8aac122bd4f6e|=6ec8aac122bd4f6e+6ec8aac122bd4f6e+…+6ec8aac122bd4f6e-…-6ec8aac122bd4f6e=6ec8aac122bd4f6e.--(8分)

(3)由于6ec8aac122bd4f6e=6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e,------(10分)

從而6ec8aac122bd4f6e>0. ----------------------(11分)

故數(shù)列6ec8aac122bd4f6e是單調(diào)遞增的數(shù)列,又因6ec8aac122bd4f6e是數(shù)列中的最小項,要使6ec8aac122bd4f6e恒成立,則只需6ec8aac122bd4f6e成立即可,由此解得m<8,由于mZ,

故適合條件的m的最大值為7. ------------------------(13分)

21. 解:(Ⅰ)設(shè)雙曲線方程為6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e),

6ec8aac122bd4f6e,

6ec8aac122bd4f6e,∴6ec8aac122bd4f6e.------------------------(2分)

6ec8aac122bd4f6e在雙曲線上,∴6ec8aac122bd4f6e

聯(lián)立①②③,解得6ec8aac122bd4f6e,6ec8aac122bd4f6e.∴雙曲線方程為6ec8aac122bd4f6e.--------(5分)

注:對點M用第二定義,得6ec8aac122bd4f6e,可簡化計算.

(Ⅱ)6ec8aac122bd4f6e,設(shè)6ec8aac122bd4f6e,6ec8aac122bd4f6e,m:6ec8aac122bd4f6e,則

6ec8aac122bd4f6e,得6ec8aac122bd4f6e,6ec8aac122bd4f6e.--------------------(7分)

6ec8aac122bd4f6e,得6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e,---------------------(9分)

消去6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e.------------------------(10分)

6ec8aac122bd4f6e,函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞增,

6ec8aac122bd4f6e,∴6ec8aac122bd4f6e.------------------------(11分)

6ec8aac122bd4f6e

 

 


同步練習(xí)冊答案