當(dāng)x≤2.時(shí).對(duì)任意的正整數(shù)n.恒有≤1. 查看更多

 

題目列表(包括答案和解析)

16、給定k∈N*,設(shè)函數(shù)f:N*→N*滿足:對(duì)于任意大于k的正整數(shù)n:f(n)=n-k
(1)設(shè)k=1,則其中一個(gè)函數(shù)f(x)在n=1處的函數(shù)值為
a(a為正整數(shù))
;
(2)設(shè)k=4,且當(dāng)n≤4時(shí),2≤f(n)≤3,則不同的函數(shù)f的個(gè)數(shù)為
16

查看答案和解析>>

給定k∈N*,設(shè)函數(shù)f:N*→N*滿足:對(duì)于任意大于k的正整數(shù)n:f(n)=n-k.
(1)設(shè)k=1,則其中一個(gè)函數(shù)f(x)在n=1處的函數(shù)值為(    );
(2)設(shè)k=4,且當(dāng)n≤4時(shí),2≤f(n)≤3,則不同的函數(shù)f的個(gè)數(shù)為(    )。

查看答案和解析>>

設(shè)函數(shù)f(x)=(2-a)lnx+
1
x
+2ax

(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a≠0時(shí),求f(x)的單調(diào)區(qū)間;
(3)當(dāng)a=2時(shí),對(duì)任意的正整數(shù)n,在區(qū)間[
1
2
,6+n+
1
n
]
上總有m+4個(gè)數(shù)使得f(a1)+f(a2)+f(a3)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,試求正整數(shù)m的最大值.

查看答案和解析>>

對(duì)于實(shí)數(shù)a,將滿足“0≤y<1且x-y為整數(shù)”的實(shí)數(shù)y稱為實(shí)數(shù)x的小數(shù)部分,用記號(hào)||x||表示,對(duì)于實(shí)數(shù)a,無(wú)窮數(shù)列{an}滿足如下條件:a1=|a,an+1=其中n=1,2,3,…
(1)若a=,求數(shù)列{an};
(2)當(dāng)a時(shí),對(duì)任意的n∈N*,都有an=a,求符合要求的實(shí)數(shù)a構(gòu)成的集合A.
(3)若a是有理數(shù),設(shè)a= (p 是整數(shù),q是正整數(shù),p、q互質(zhì)),問(wèn)對(duì)于大于q的任意正整數(shù)n,是否都有an=0成立,并證明你的結(jié)論.

查看答案和解析>>

已知函數(shù)f(x)對(duì)任意實(shí)數(shù)p,q都滿足f(p+q)=f(p)f(q),且f(1)=
1
3

(1)當(dāng)n∈N*時(shí),求f(n)的表達(dá)式;
(2)設(shè)an=nf(n)( n∈N*),Sn是數(shù)列{an}的前n項(xiàng)和,求證:Sn
3
4

(3)設(shè)bn=
nf(n+1)
f(n)
( n∈N*),數(shù)列{bn}的前n項(xiàng)和為T(mén)n,若
1
T1
+
1
T2
+
1
T3
+…+
1
Tn
m-2000
2
對(duì)n∈N*恒成立,求最小正整數(shù)m.

查看答案和解析>>


同步練習(xí)冊(cè)答案