則 g′(x)=1+>0.所以當x∈[2,+∞]時.g(x)單調(diào)遞增.又 g(2)=0 查看更多

 

題目列表(包括答案和解析)

定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.如果對于函數(shù)f(x)的所有上界中有一個最小的上界,就稱其為函數(shù)f(x)的上確界.已知函數(shù)f(x)=1+a•(
1
2
)x+(
1
4
)x
g(x)=
1-m•2x
1+m•2x

(1)當a=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍;
(3)若m>0,求函數(shù)g(x)在[0,1]上的上確界T(m).

查看答案和解析>>

給出下列幾個命題:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若函數(shù)f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,當x1<x2時,f(x1)>f(x2),則f(x)是減函數(shù);
④設(shè)函數(shù)y=
1-x
+
x+3
的最大值和最小值分別為M和m,則M=
2
m
;
⑤若f(x)是定義域為R的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④⑤
①④⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

給出下列幾個命題:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若函數(shù)f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,當x1<x2時,f(x1)>f(x2),則f(x)是減函數(shù);
④設(shè)函數(shù)的最大值和最小值分別為M和m,則;
⑤若f(x)是定義域為R的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是    .(寫出所有正確命題的序號)

查看答案和解析>>

給出下列幾個命題:
①若函數(shù)f(x)的定義域為R,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若函數(shù)f(x)是定義域為R的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,當x1<x2時,f(x1)>f(x2),則f(x)是減函數(shù);
④設(shè)函數(shù)y=
1-x
+
x+3
的最大值和最小值分別為M和m,則M=
2
m
;
⑤若f(x)是定義域為R的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是______.(寫出所有正確命題的序號)

查看答案和解析>>

(1)設(shè)函數(shù)f(x)=
-1(x<0)
0(x=0)
1(x>0)
,則當a≠b時,
a+b+(a-b)f(a-b)
2
的值應為
D
D

A.|a|B.|b|C.a(chǎn),b中的較小數(shù)     D.a(chǎn),b中的較大數(shù)
(2)某大學的信息中心A與大學各部門、各院系B、C、D、E、F、G、H、I之間擬建立信息聯(lián)網(wǎng)工程,實際測算的費用如圖所示(單位萬元),請觀察圖形,可以不建部分網(wǎng)線,而使得中心與各部門、各院系都能連通(直接或中轉(zhuǎn)),則最少的建網(wǎng)費用是
13
13
萬元.

查看答案和解析>>


同步練習冊答案