提示:8.利用點到直線的距離公式知.即在圓內(nèi).也在橢圓內(nèi).所以過點的直線與橢圓總有兩個不同的交點. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.

(Ⅰ)將曲線C1上的所有點的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的、2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程.

(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

【解析】(Ⅰ)根據(jù)極坐標(biāo)與普通方程的互化,將直線l:ρ(2cosθ-sinθ)=6化為普通方程,C2的方程為,化為普通方程;(Ⅱ)利用點到直線的距離公式表示出距離,求最值.

 

查看答案和解析>>

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

 
            

兩點,當(dāng)l的斜率為1時,坐標(biāo)原點O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運(yùn)用能力,第一問直接運(yùn)用點到直線的距離公式以及橢圓有關(guān)關(guān)系式計算,第二問利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。

查看答案和解析>>

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點F的直線l與C相交于A、B

 
            

兩點,當(dāng)l的斜率為1時,坐標(biāo)原點O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運(yùn)用能力,第一問直接運(yùn)用點到直線的距離公式以及橢圓有關(guān)關(guān)系式計算,第二問利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。

查看答案和解析>>

如圖,類比直線方程的截距式和點到直線的距離公式,則點H(4,2,1)到平面ABC的距離是
32
61
61
32
61
61

查看答案和解析>>

(1)證明:P(x0,y0)到直線Ax+By+C=0的距離公式為d=
|Ax0+By0+C|
A2+B2

(2)已知:在空間直角坐標(biāo)系中,三元一次方程Ax+By+Cz+D=0(其中A,B,C,D為常數(shù),且A,B,C不全為零)表示平面,
n
=(A,B,C)
為該平面的一個法向量.請類比點到直線的距離公式,寫出空間的點P(x0,y0,z0)到平面Ax+By+Cz+D=0的距離公式,并為加以證明.

查看答案和解析>>


同步練習(xí)冊答案