題目列表(包括答案和解析)
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
A班 | 14 | 6 | 20 |
B班 | 7 | 13 | 20 |
C班 | 21 | 19 | 40 |
P(x2≥k) | 0.050 | 0.010 |
K | 3.841 | 6.635 |
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
A班 | 14 | 6 | 20 |
B班 | 7 | 13 | 20 |
C班 | 21 | 19 | 40 |
P(x2≥k) | 0.050 | 0.010 |
K | 3.841 | 6.635 |
已知橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.
(1)求橢圓的方程;
(2)過右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請說明理由.
過拋物線的對稱軸上的定點(diǎn),作直線與拋物線相交于兩點(diǎn).
(I)試證明兩點(diǎn)的縱坐標(biāo)之積為定值;
(II)若點(diǎn)是定直線上的任一點(diǎn),試探索三條直線的斜率之間的關(guān)系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
(1)中證明:設(shè)下證之:設(shè)直線AB的方程為: x=ty+m與y2=2px聯(lián)立得消去x得y2=2pty-2pm=0,由韋達(dá)定理得
(2)中:因?yàn)槿龡l直線AN,MN,BN的斜率成等差數(shù)列,下證之
設(shè)點(diǎn)N(-m,n),則直線AN的斜率KAN=,直線BN的斜率KBN=
KAN+KBN=+
本題主要考查拋物線與直線的位置關(guān)系以及發(fā)現(xiàn)問題和解決問題的能力.
一、1.D 2. B 3.A 4.D 5. D 6. A 7. B 8. C 9. D 10. C 11. C 12 A 13. 提示:此題為抽樣方法的選取問題.當(dāng)總體中個(gè)體較多時(shí)宜采用系統(tǒng)抽樣;當(dāng)總體中的個(gè)體差異較大時(shí),宜采用分層抽樣;當(dāng)總體中個(gè)體較少時(shí),宜采用隨機(jī)抽樣.
依據(jù)題意,第①項(xiàng)調(diào)查應(yīng)采用分層抽樣法、第②項(xiàng)調(diào)查應(yīng)采用簡單隨機(jī)抽樣法.故選B.
答案:B
|