題目列表(包括答案和解析)
(1)P(ξ<1.8)=___________;(2)P(-1<ξ<1.5)=___________;
(3)P(ξ>-1.5)=___________;(4)P(|ξ|<2)=___________.
x2 |
a2 |
y2 |
b2 |
| ||
2 |
(參考數(shù)據(jù):標(biāo)準(zhǔn)正態(tài)分布表(部分))
Φ(x0)=p(x<x0)
x0 0 1 2 3 4 5 6 7 8 9
… … … … … … … … … … …
0.9 0.8159 0.8186 0.8212 0.8213 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
… … … … … … … … … … …
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.98080 .981 0.9817
(本小題滿分13分)
已知橢圓經(jīng)過點(diǎn)(p,q),離心率其中p,q分別表示標(biāo)準(zhǔn)正態(tài)分布的期望值與標(biāo)準(zhǔn)差。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為。①試建立的面積關(guān)于m的函數(shù)關(guān)系;②莆田十中高三(1)班數(shù)學(xué)興趣小組通過試驗(yàn)操作初步推斷:“當(dāng)m變化時(shí),直線與x軸交于一個(gè)定點(diǎn)”。你認(rèn)為此推斷是否正確?若正確,請(qǐng)寫出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不正確,請(qǐng)說明理由。
在某校舉行的數(shù)學(xué)競賽中,全體參賽學(xué)生的競賽成績近似服從正態(tài)分布。已知成績?cè)?0分以上(含90分)的學(xué)生有12名。
(Ⅰ)、試問此次參賽學(xué)生總數(shù)約為多少人?
(Ⅱ)、若該校計(jì)劃獎(jiǎng)勵(lì)競賽成績排在前50名的學(xué)生,試問設(shè)獎(jiǎng)的分?jǐn)?shù)線約為多少分?
可共查閱的(部分)標(biāo)準(zhǔn)正態(tài)分布表
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1.2 1.3 1.4 1.9 2.0 2.1 | 0.8849 0.9032 0.9192 0.9713 0.9772 0.9821 | 0.8869 0.9049 0.9207 0.9719 0.9778 0.9826 | 0.888 0.9066 0.9222 0.9726 0.9783 0.9830 | 0.8907 0.9082 0.9236 0.9732 0.9788 0.9834 | 0.8925 0.9099 0.9251 0.9738 0.9793 0.9838 | 0.8944 0.9115 0.9265 0.9744 0.9798 0.9842 | 0.8962 0.9131 0.9278 0.9750 0.9803 0.9846 | 0.8980 0.9147 0.9292 0.9756 0.9808 0.9850 | 0.8997 0.9162 0.9306 0.9762 0.9812 0.9854 | 0.9015 0.9177 0.9319 0.9767 0.9817 0.9857 |
點(diǎn)評(píng):本小題主要考查正態(tài)分布,對(duì)獨(dú)立事件的概念和標(biāo)準(zhǔn)正態(tài)分布的查閱,考查運(yùn)用概率統(tǒng)計(jì)知識(shí)解決實(shí)際問題的能力。
一、1.D 2. B 3.A 4.D 5. D 6. A 7. B 8. C 9. D 10. C 11. C 12 A 13. 提示:此題為抽樣方法的選取問題.當(dāng)總體中個(gè)體較多時(shí)宜采用系統(tǒng)抽樣;當(dāng)總體中的個(gè)體差異較大時(shí),宜采用分層抽樣;當(dāng)總體中個(gè)體較少時(shí),宜采用隨機(jī)抽樣.
依據(jù)題意,第①項(xiàng)調(diào)查應(yīng)采用分層抽樣法、第②項(xiàng)調(diào)查應(yīng)采用簡單隨機(jī)抽樣法.故選B.
答案:B
|