為隨機變量的概率分布.簡稱的分布列.由概率的性質(zhì)可知.任一離散型隨機變量的分布列都具有下述兩個性質(zhì): 查看更多

 

題目列表(包括答案和解析)

為了讓更多的人參與2011年在深圳舉辦的“大運會”,深圳某旅游公司向國內(nèi)外發(fā)行總量為2000萬張的旅游優(yōu)惠卡,其中向境外人士發(fā)行的是旅游金卡(簡稱金卡),向境內(nèi)人士發(fā)行的是旅游銀卡(簡稱銀卡).現(xiàn)有一個由36名游客組成的旅游團到深圳參觀旅游,其中是境外游客,其余是境內(nèi)游客.在境外游客中有持金卡,在境內(nèi)游客中有持銀卡.

(Ⅰ)在該團中隨機采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;

(Ⅱ)在該團的省內(nèi)游客中隨機采訪3名游客,設(shè)其中持銀卡人數(shù)為隨機變量X,求X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))AB,系統(tǒng)AB在任意時刻發(fā)生故障的概率分別為p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;
(2)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))AB,系統(tǒng)AB在任意時刻發(fā)生故障的概率分別為p.

(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;

(2)設(shè)系統(tǒng)A3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學(xué)期望.

 

查看答案和解析>>

某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))AB,系統(tǒng)AB在任意時刻發(fā)生故障的概率分別為p.
(1)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;
(2)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學(xué)期望.

查看答案和解析>>

某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))A和B,系統(tǒng)A和B在任意時刻發(fā)生故障的概率分別為和p.

(Ⅰ)若在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率為,求p的值;

(Ⅱ)設(shè)系統(tǒng)A在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量ξ,求ξ的概率分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

一、1.D 2. B 3.A  4.D  5. D  6.  A  7.  B  8.  C  9.  D  10.  C   11.  C  12 A 13. 提示:此題為抽樣方法的選取問題.當(dāng)總體中個體較多時宜采用系統(tǒng)抽樣;當(dāng)總體中的個體差異較大時,宜采用分層抽樣;當(dāng)總體中個體較少時,宜采用隨機抽樣.

依據(jù)題意,第①項調(diào)查應(yīng)采用分層抽樣法、第②項調(diào)查應(yīng)采用簡單隨機抽樣法.故選B.

答案:B

1,3,5

答案:B

二. 15. 37  ; 16.  ; 17.甲 ; 18.5600;

19. 提示:此問題總體中個體的個數(shù)較多,因此采用系統(tǒng)抽樣.按題目中要求的規(guī)則抽取即可.

m=6,k=7,m+k=13,∴在第7小組中抽取的號碼是63.

答案:63

20.提示:不妨設(shè)在第1組中隨機抽到的號碼為x,則在第16組中應(yīng)抽出的號碼為120+x.

設(shè)第1組抽出的號碼為x,則第16組應(yīng)抽出的號碼是8×15+x=126,∴x=6.

答案:6

三.21.解 分層抽樣應(yīng)按各層所占的比例從總體中抽取.

∵120∶16∶24=15∶2∶3,又共抽出20人,

∴各層抽取人數(shù)分別為20×=15人,20×=2人,20×=3人.

答案:15人、2人、3人.

22. 解:(1)  ;  ;;.

的概率分布如下表

0

1

2

3

P

(2)乙至多擊中目標(biāo)2次的概率為.

  • <pre id="46gyc"><blockquote id="46gyc"></blockquote></pre>
  • <kbd id="46gyc"></kbd>
  • 1,3,5

    所以甲恰好比乙多擊中目標(biāo)2次的概率為

     


    同步練習(xí)冊答案