(2)由題意知隨機變量可能取的值為1.2.3, ,.,所以的分布列是ξ123P7/152/52/15 查看更多

 

題目列表(包括答案和解析)

已知隨機變ξ服從正態(tài)分布N(μ,O2),且p(1<ξ≤2)=P(6<ξ≤7),則μ=(  )

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調(diào)遞減;當單調(diào)遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調(diào)遞增;當時,單調(diào)遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

 

查看答案和解析>>

已知函數(shù)取得極值

(1)求的單調(diào)區(qū)間(用表示);

(2)設,,若存在,使得成立,求的取值范圍.

【解析】第一問利用

根據(jù)題意取得極值,

對參數(shù)a分情況討論,可知

時遞增區(qū)間:    遞減區(qū)間: ,

時遞增區(qū)間:    遞減區(qū)間: ,

第二問中, 由(1)知:

,

 

從而求解。

解:

…..3分

取得極值, ……………………..4分

(1) 當時  遞增區(qū)間:    遞減區(qū)間: ,

時遞增區(qū)間:    遞減區(qū)間: , ………….6分

 (2)  由(1)知:

,

 

……………….10分

, 使成立

    得:

 

查看答案和解析>>

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(2,0)的直線與橢圓相交于兩點,設為橢圓上一點,且滿足O為坐標原點),當 時,求實數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關系的運用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

解析:由題意知

當-2≤x≤1時,f(x)=x-2,

當1<x≤2時,f(x)=x3-2,

又∵f(x)=x-2,f(x)=x3-2在定義域上都為增函數(shù),

f(x)的最大值為f(2)=23-2=6.

答案:C

查看答案和解析>>


同步練習冊答案