如圖所示.“嫦娥一號 探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球.在月球附近一點P變軌進入以月球球心F為一個焦點的橢圓軌道I繞月飛行.之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道Ⅱ繞月飛行.最終衛(wèi)星在P點第三次變軌進入以F為圓形軌道Ⅲ繞月飛行.若用和分別表示橢圓軌道I和Ⅱ的焦距.用和分別表示橢圓軌道I和Ⅱ的長軸的長.給出下列式子: 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點P變軌進入以月球球心F為一個焦點的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:
①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c2;④
c1
a1
c2
a2

其中正確式子的序號是( 。
A、①③B、②③C、①④D、②④

查看答案和解析>>

如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點P變軌進入以月球球心F為一個焦點的橢圓軌道I繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2,分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:

①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c2;④

其中正確式子的序號是

A.①③       B. ②③    C.①④    D.②④

查看答案和解析>>

如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點P變軌進入以月球球心F為一個焦點的橢圓軌道I繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓心的圓形軌道Ⅲ繞月飛行.已知橢圓軌道I和Ⅱ的中心與F在同一直線上,設(shè)橢圓軌道I和Ⅱ的長半軸長分別為,半焦距分別為,則有(   ).

A.   B.   C.    D.

查看答案和解析>>

如圖所示,“嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點P變軌進入以月球球心F為一個焦點的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓心的圓形軌道Ⅲ繞月飛行,若用2c1和2c2分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用2a1和2a2分別表示橢圓軌道Ⅰ和Ⅱ的長軸的長,給出下列式子:
①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a2>a1c2;④
c1
a1
c2
a2

其中正確式子的序號是(  )
A.①③B.②③C.①④D.②④
精英家教網(wǎng)

查看答案和解析>>

如圖所示, “嫦娥一號”探月衛(wèi)星沿地月轉(zhuǎn)移軌道飛向月球,在月球附近一點P變軌進入以月球球心F為一個焦點的橢圓軌道I繞月飛行,之后衛(wèi)星在P點第二次變軌進入仍以F為一個焦點的橢圓軌道Ⅱ繞月飛行,最終衛(wèi)星在P點第三次變軌進入以F為圓形軌道Ⅲ繞月飛行,若用分別表示橢圓軌道I和Ⅱ的焦距,用分別表示橢圓軌道I和Ⅱ的長軸的長,給出下列式子:

其中正確式子的序號是

  A.①③               B.②③              C.①④           D.②④

查看答案和解析>>

一、選擇題:本大題考查基本概念和基本運算.每小題5分,滿分60分.

 

1.A     2.C     3.C     4.B     5.C     6.D7.A             8.D        9.B        10.B

11.A  12.C

二、填空題:13、4    14.  15. 16.

 

三、解答題:

17.解:f(x)=a(cosx+1+sinx)+b=         (2分)

(1)當(dāng)a=1時,f(x)= ,

當(dāng)時,f(x)是增函數(shù),所以f(x)的單調(diào)遞增區(qū)間為                          (6分)

(2)由,∴

∴當(dāng)sin(x+)=1時,f(x)取最小值3,即,     

當(dāng)sin(x+)=時,f(x)取最大值4,即b=4.               (10分)

將b=4 代入上式得,故a+b=                 (12分)

 

 

18.解:設(shè)甲、乙兩條船到達的時刻分別為x,y.則

若甲先到,則乙必須晚1小時以上到達,即

 

若乙先到達,則甲必須晚2小時以上到達,即

 

作圖,(略).利用面積比可算出概率為.

 

 

19.

解:(I)如圖所示, 連結(jié)是菱形且知,

是等邊三角形. 因為E是CD的中點,所以

所以

              又因為PA平面ABCD,平面ABCD,

所以因此 平面PAB.

平面PBE,所以平面PBE平面PAB.

(II)由(I)知,平面PAB, 平面PAB, 所以

所以是二面角的平面角.

中,

故二面角的大小為

 

20.解:

(1)

    .

    上是增函數(shù).

   (2)

   (i)

當(dāng)的單調(diào)遞增區(qū)間是

  

 

(ii)

當(dāng)

    當(dāng)的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是.   所以,的單調(diào)遞增區(qū)間是單調(diào)遞減區(qū)間是.

    由上知,當(dāng)x=1時,fx)取得極大值f(1)=2

    又b>1,由2=b3-3b,解得b=2.

    所以,時取得最大值f(1)=2.

    當(dāng)時取得最大值.

<style id="xalk9"></style>

         

         

         

         

        所以,函數(shù)上的最大值為

         

        21. 解:設(shè):代入  設(shè)P(),Q

         

        整理, 此時,

        22.解:(Ⅰ)經(jīng)計算,,,. ……………2分

        當(dāng)為奇數(shù)時,,即數(shù)列的奇數(shù)項成等差數(shù)列,

        ;                    ………………4分

        當(dāng)為偶數(shù),,即數(shù)列的偶數(shù)項成等比數(shù)列,

        .                     ……………………6分

        因此,數(shù)列的通項公式為.  ……… 7分

        (注:如遇考生用數(shù)學(xué)歸納法推證通項公式,可酌情給分)

        (Ⅱ),                      ………………8分

          ……(1)

        (2)

        (1)、(2)兩式相減,

            …………10分

           .                   ……………………12分

         

         

         

         

         


        同步練習(xí)冊答案
      • <source id="xalk9"><dfn id="xalk9"><cite id="xalk9"></cite></dfn></source>