題目列表(包括答案和解析)
一個(gè)盒子中裝有5個(gè)編號(hào)依次為1、2、3、4、5的球,這5個(gè)球除號(hào)碼外完全相同,有放回的連續(xù)抽取兩次,每次任意地取出一個(gè)球。
(1) 用列表或畫(huà)樹(shù)狀圖的方法列出所有可能結(jié)果。(4分)
(2) 求事件A=“取出球的號(hào)碼之和不小于6”的概率。(5分)
(3)設(shè)第一次取出的球號(hào)碼為x,第二次取出的球號(hào)碼為y,求事件B=“點(diǎn)(x,y)落在直線(xiàn) y = x+1 上方”的概率。 (5分)
如圖,已知直線(xiàn)()與拋物線(xiàn):和圓:都相切,是的焦點(diǎn).
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線(xiàn)的切線(xiàn),直線(xiàn)交軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線(xiàn)上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線(xiàn)為, 直線(xiàn)與軸交點(diǎn)為,連接交拋物線(xiàn)于、兩點(diǎn),求△的面積的取值范圍.
【解析】第一問(wèn)中利用圓: 的圓心為,半徑.由題設(shè)圓心到直線(xiàn)的距離.
即,解得(舍去)
設(shè)與拋物線(xiàn)的相切點(diǎn)為,又,得,.
代入直線(xiàn)方程得:,∴ 所以,
第二問(wèn)中,由(Ⅰ)知拋物線(xiàn)方程為,焦點(diǎn). ………………(2分)
設(shè),由(Ⅰ)知以為切點(diǎn)的切線(xiàn)的方程為.
令,得切線(xiàn)交軸的點(diǎn)坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線(xiàn)
第三問(wèn)中,設(shè)直線(xiàn),代入得結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設(shè)圓心到直線(xiàn)的距離.
即,解得(舍去). …………………(2分)
設(shè)與拋物線(xiàn)的相切點(diǎn)為,又,得,.
代入直線(xiàn)方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線(xiàn)方程為,焦點(diǎn). ………………(2分)
設(shè),由(Ⅰ)知以為切點(diǎn)的切線(xiàn)的方程為.
令,得切線(xiàn)交軸的點(diǎn)坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線(xiàn)上.…(2分)
(Ⅲ)設(shè)直線(xiàn),代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
如圖,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,點(diǎn)P為線(xiàn)段CA(不包括端點(diǎn))上的一個(gè)動(dòng)點(diǎn),以為圓心,1為半徑作.
(1)連結(jié),若,試判斷與直線(xiàn)AB的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)線(xiàn)段PC等于多少時(shí),與直線(xiàn)AB相切?
(3)當(dāng)與直線(xiàn)AB相交時(shí),寫(xiě)出線(xiàn)段PC的取值范圍。
(第(3)問(wèn)直接給出結(jié)果,不需要解題過(guò)程)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com