12 平面向量的集合A到A的映射.其中為常向量.若映射f滿足對任意的恒成立.則的坐標(biāo)可能是 查看更多

 

題目列表(包括答案和解析)

平面向量的集合A到A的映射f由f(
x
)=
x
-2(
x
a
)  
a
確定,其中
a
為常向量.若映射f滿足f(
x
) •f(
y
) =
x
• 
y
x
,
y
∈A
恒成立,則
a
的坐標(biāo)不可能是( 。
A、(0,0)
B、(-
2
4
,
2
4
C、(-
2
2
,
2
2
D、(-
1
2
,
3
2

查看答案和解析>>

平面向量的集合A到A的映射f(
x
)=
x
-(
x
a
)•
a
,其中
a
為常向量,若f滿足f(
x
)•f(
y
)=
x
y
對任意
x
,
y
∈A
成立,則
a
的坐標(biāo)可以是( 。

查看答案和解析>>

已知平面向量的集合A到B的映射f為f(
x
)=
x
-2(
x
a
a
,其中
a
為常向量,若映射f滿足f(
x
)•f(
y
)=
x
y
對任意
x
y
∈A恒成立,則
a
用坐標(biāo)可能是(  )

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空題

13.3    14.1   15.36π    16.

三、解答題

17.解:(1)

=………………………….2分

=.………………………………………4分

    20090327

    (2)要使函數(shù)為偶函數(shù),只需

    …………………………………………….8分

    因為,

    所以.…………………………………………………………10分

    18.(1)由題意知隨機變量ξ的取值為2,3,4,5,6.

    ,,…………….2分

     ,

    .…………………………. …………4分

    所以隨機變量ξ的分布列為

    2

    3

    4

    5

    6

    P

    …………………………………………6分

    (2)隨機變量ξ的期望為

    …………………………12分

    19.解:(1)過點作,由正三棱柱性質(zhì)知平面,

    連接,則在平面上的射影.

    ,,…………………………2分

    中點,又,

    所以的中點.

    ,

    連結(jié),則,

    *為二面角

    的平面角.…4分

    中,

    =,

    .

    所以二面角的正切值為..…6分

    (2)中點,

    到平面距離等于到平面距離的2倍,

    又由(I)知平面,

    平面平面,

    ,則平面,

    .

    故所求點到平面距離為.…………………………12分

    20.解:(1)函數(shù)的定義域為,因為

    所以 當(dāng)時,;當(dāng)時,.

    的單調(diào)遞增區(qū)間是;的單調(diào)遞減區(qū)間是.………6分

    (注: -1處寫成“閉的”亦可)

    (2)由得:,

    ,則,

    所以時,,時,,

    上遞減,在上遞增,…………………………10分

    要使方程在區(qū)間上只有一個實數(shù)根,則必須且只需

    解之得

    所以實數(shù)的取值范圍.……………………12分

    21.解:(1)設(shè),

    因為拋物線的焦點

    .……………………………1分

    ,…2分

    ,

    而點A在拋物線上,

    .……………………………………4分

    ………………………………6分

    (2)由,得,顯然直線,的斜率都存在且都不為0.

    設(shè)的方程為,則的方程為.

        由 ,同理可得.………8分

     

    =.(當(dāng)且僅當(dāng)時取等號)

    所以的最小值是8.…………………………………………………………12分

    22.解:(1),由數(shù)列的遞推公式得

    ,.……………………………………………………3分

    (2)

    =

    ==.……………………5分

    數(shù)列為公差是的等差數(shù)列.

    由題意,令,得.……………………7分

    (3)由(2)知,

    所以.……………………8分

    此時=

    =,……………………10分

    *

    *

     =

    >.……………………12分

     


    同步練習(xí)冊答案