8.設(shè).如果.則實(shí)數(shù)的值為 查看更多

 

題目列表(包括答案和解析)

如果實(shí)數(shù)x,y,t滿足|x-t|≤|y-t|,則稱x比y接近t.
(Ⅰ)設(shè)a為實(shí)數(shù),若a|a|比a更接近1,求a的取值范圍;
(Ⅱ)f(x)=ln
x-1
x+1
,證明:
n
k=2
f(k)
2-n-n2
2n(n+1)
更接近0(k∈Z).

查看答案和解析>>

如果實(shí)數(shù)x,y,t滿足|x-t|≤|y-t|,則稱x比y接近t.
(1)設(shè)a為實(shí)數(shù),若a|a| 比a更接近1,求a的取值范圍;
(2)f(x)=ln,證明:更接近0(k∈Z).

查看答案和解析>>

如果實(shí)數(shù)x,y,t滿足|x-t|≤|y-t|,則稱x比y接近t.
(Ⅰ)設(shè)a為實(shí)數(shù),若a|a|比a更接近1,求a的取值范圍;
(Ⅱ)f(x)=ln,證明:更接近0(k∈Z).

查看答案和解析>>

設(shè)函數(shù)的定義域?yàn)?b>R,如果存在函數(shù)為常數(shù)),使得對(duì)于一切實(shí)數(shù)都成立,那么稱為函數(shù)的一個(gè)承托函數(shù). 已知對(duì)于任意是函數(shù)的一個(gè)承托函數(shù),記實(shí)數(shù)a的取值范圍為集合M,則有(    )A.

B.

C.

D.

 

查看答案和解析>>

設(shè)函數(shù)的定義域?yàn)镈,若存在非零數(shù)使得對(duì)于任意,則稱為M上的高調(diào)函數(shù)。

現(xiàn)給出下列命題:

①函數(shù)為R上的1高調(diào)函數(shù);

②函數(shù)為R上的高調(diào)函數(shù)

③如果定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091227514213804545_ST.files/image009.png">的函數(shù)高調(diào)函數(shù),那么實(shí)數(shù)的取值范圍是

其中正確的命題是        。(寫出所有正確命題的序號(hào))

 

查看答案和解析>>

 

一、選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

D

A

D

C

A

B

A

D

B

 

二、填空題

13.3    14.1   15.36π    16.

三、解答題

17.解:(1)

=………………………….2分

=.………………………………………4分

20090327

(2)要使函數(shù)為偶函數(shù),只需

…………………………………………….8分

因?yàn)?sub>,

所以.…………………………………………………………10分

18.(1)由題意知隨機(jī)變量ξ的取值為2,3,4,5,6.

,,…………….2分

 , ,

.…………………………. …………4分

所以隨機(jī)變量ξ的分布列為

2

3

4

5

6

P

…………………………………………6分

(2)隨機(jī)變量ξ的期望為

…………………………12分

19.解:(1)過點(diǎn)作,由正三棱柱性質(zhì)知平面,

連接,則在平面上的射影.

,,…………………………2分

中點(diǎn),又,

所以的中點(diǎn).

,

連結(jié),則,

*為二面角

的平面角.…4分

中,

=,

.

所以二面角的正切值為..…6分

(2)中點(diǎn),

到平面距離等于到平面距離的2倍,

又由(I)知平面,

平面平面

,則平面,

.

故所求點(diǎn)到平面距離為.…………………………12分

20.解:(1)函數(shù)的定義域?yàn)?sub>,因?yàn)?/p>

,

所以 當(dāng)時(shí),;當(dāng)時(shí),.

的單調(diào)遞增區(qū)間是;的單調(diào)遞減區(qū)間是.………6分

(注: -1處寫成“閉的”亦可)

(2)由得:

,則,

所以時(shí),,時(shí),,

上遞減,在上遞增,…………………………10分

要使方程在區(qū)間上只有一個(gè)實(shí)數(shù)根,則必須且只需

解之得

所以實(shí)數(shù)的取值范圍.……………………12分

21.解:(1)設(shè),

因?yàn)閽佄锞的焦點(diǎn)

.……………………………1分

,…2分

而點(diǎn)A在拋物線上,

.……………………………………4分

………………………………6分

(2)由,得,顯然直線的斜率都存在且都不為0.

設(shè)的方程為,則的方程為.

    由 ,同理可得.………8分

 

=.(當(dāng)且僅當(dāng)時(shí)取等號(hào))

所以的最小值是8.…………………………………………………………12分

22.解:(1),由數(shù)列的遞推公式得

,.……………………………………………………3分

(2)

=

==.……………………5分

數(shù)列為公差是的等差數(shù)列.

由題意,令,得.……………………7分

(3)由(2)知,

所以.……………………8分

此時(shí)=

=,……………………10分

*

*

 =

>.……………………12分

 


同步練習(xí)冊(cè)答案