9.已知直線(xiàn)x+y=a與圓x2+y2=4交于A.B兩點(diǎn).且.其中O為坐標(biāo)原點(diǎn).則實(shí)數(shù)a的值為 查看更多

 

題目列表(包括答案和解析)

已知直線(xiàn)x+y=a與圓x2+y2=4交于A、B兩點(diǎn),且|
OA
+
OB
|=|
OA
-
OB
|,其中O為原點(diǎn),則實(shí)數(shù)a的值為( 。
A、2
B、-2
C、2或-2
D、
6
或-
6

查看答案和解析>>

已知直線(xiàn)x+y=a與圓x2+y2=4交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),向量
OA
、
OB
滿(mǎn)足|
OA
+
OB
|=|
OA
-
OB
|
,則實(shí)數(shù)a的
 

查看答案和解析>>

已知直線(xiàn)x+y=a與圓x2+y2=4交于A、B兩不同點(diǎn),O是坐標(biāo)原點(diǎn),向量
OA
、
OB
滿(mǎn)足
OA
OB
=0,則實(shí)數(shù)a的值是(  )
A、2
B、±2
C、±
6
D、-2

查看答案和解析>>

已知直線(xiàn)x+y=a與圓x2+y2=4交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),向量
OA
、
OB
滿(mǎn)足|
OA
+
OB
|=|
OA
-
OB|
,則實(shí)數(shù)a的值(  )
A、2
B、-2
C、
6
或-
6
D、2或-2

查看答案和解析>>

已知直線(xiàn)x+y=a與圓x2+y2=4交于A、B兩點(diǎn),且
OA
OB
=2
(其中O為原點(diǎn)),則實(shí)數(shù)a等于(  )
A、±
6
B、±(
3
+1)
C、±2
D、±
2

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.  14.  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

17.(本小題滿(mǎn)分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿(mǎn)分12分)

       解:以DA,DCDP所在直線(xiàn)分別為x軸,y軸,z軸建立空間直角坐標(biāo)系(如圖).

               P(0,0,a),F,).………………2分

           (I)

               …………………………………………4分

        文本框:     (II)設(shè)平面DEF的法向量為

               得

               取x=1,則y=-2,z=1.

               ………………………………………………6分

              

               設(shè)DB與平面DEF所成角為……………………………………8分

           (III)假設(shè)存在點(diǎn)G滿(mǎn)足題意

               因?yàn)?sub>

              

               ∴存在點(diǎn)G,其坐標(biāo)為(,0,0),即G點(diǎn)為AD的中點(diǎn).……………………12分

        19.(本小題滿(mǎn)分12分)

               解:(I)ξ的所有可能取值為0,1,2,依題意得:

               …………3分

               ∴ξ的分布列為

              

        ξ

        0

        1

        2

        P

               ∴Eξ=0×+1×+2×=1.…………………………………………4分

           (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

               ∴所求概率為…………………………………8分

           (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

               ………………………………10分

               ……………12分

        20.(本小題滿(mǎn)分12分)

               解:(I)由題意知

               是等差數(shù)列.…………………………………………2分

              

               ………………………………5分

           (II)由題設(shè)知

              

               是等差數(shù)列.…………………………………………………………8分

              

               ………………………………10分

               ∴當(dāng)n=1時(shí),

               當(dāng)

               經(jīng)驗(yàn)證n=1時(shí)也適合上式. …………………………12分

        21.(本小題滿(mǎn)分12分)

               解:(I)令

               則

               是單調(diào)遞減函數(shù).……………………………………2分

               又取

               在其定義域上有唯一實(shí)根.……………………………4分

           (II)由(I)知方程有實(shí)根(或者由,易知x=0就是方程的一個(gè)根),滿(mǎn)足條件①.………………………………………………5分

              

               滿(mǎn)足條件②.故是集合M中的元素.……………………………7分

           (III)不妨設(shè)在其定義域上是增函數(shù).

               ………………………………………………………………8分

               是其定義域上的減函數(shù).

               .………………10分

              

               …………………………………………12分

        22.(本小題滿(mǎn)分14分)

               解:(I)設(shè)

               由

               ………………………………………………2分

               又

              

               同理,由………………………………4分

               …………6分

           (II)方法一:當(dāng)m=0時(shí),A(2,2),B(2,-),Dn,2),En,-2).

               ∵ABED為矩形,∴直線(xiàn)AE、BD的交點(diǎn)N的坐標(biāo)為(………………8分

               當(dāng)

              

               同理,對(duì)、進(jìn)行類(lèi)似計(jì)算也得(*)式.………………………………12分

               即n=-2時(shí),N為定點(diǎn)(0,0).

               反之,當(dāng)N為定點(diǎn),則由(*)式等于0,得n=-2.…………………………14分

               方法二:首先n=-2時(shí),則D(-2,y1),A

                 ①

                 ②…………………………………………8分

               ①-②得

              

               …………………………………………………………10分

               反之,若N為定點(diǎn)N(0,0),設(shè)此時(shí)

               則

               由D、N、B三點(diǎn)共線(xiàn),   ③

               同理E、N、A三點(diǎn)共線(xiàn), ④………………12分

               ③+④得

               即-16m+8m4m=0,m(n+2)=0.

               故對(duì)任意的m都有n=-2.……………………………………………………14分

         

         

         


        同步練習(xí)冊(cè)答案