22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

一、選擇題:(每題5分,共60分)

<samp id="xxhkn"></samp>

20080416

二、填空題:每題5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1),

.又,.(6分)

   (2)由,

.(6分)

18.證明:(1)因?yàn)樵谡叫蜛BCD中,AC=2

        可得:在△PAB中,PA2+AB2=PB2=6。

        所以PA⊥AB

        同理可證PA⊥AD

        故PA⊥平面ABCD (4分)

           (2)取PE中點(diǎn)M,連接FM,BM,

        連接BD交AC于O,連接OE

        ∵F,M分別是PC,PF的中點(diǎn),

        ∴FM∥CE,

        又FM面AEC,CE面AEC

        ∴FM∥面AEC

        又E是DM的中點(diǎn)

        OE∥BM,OE面AEC,BM面AEC

        ∴BM∥面AEC且BM∩FM=M

        ∴平面BFM∥平面ACE

        又BF平面BFM,∴BF∥平面ACE (4分)

           (3)連接FO,則FO∥PA,因?yàn)镻A⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

        SㄓACD=1,

            ∴VFACD=VF――ACD=  (4分)

        19. (1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

        設(shè)圓的圓心坐標(biāo)為(x,y),則(為參數(shù)),

        消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

           (2)有方程組得公共弦的方程:

        圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

        ∴弦長(zhǎng)l=(定值)               (5分)

        20.解:(1),

        當(dāng)時(shí),取最小值

        .(6分)

           (2)令,

        ,(不合題意,舍去).

        當(dāng)變化時(shí),的變化情況如下表:

        遞增

        極大值

        遞減

        內(nèi)有最大值

        內(nèi)恒成立等價(jià)于內(nèi)恒成立,

        即等價(jià)于,

        所以的取值范圍為.(6分)

        21.解:(1)

        ,

        數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,

        當(dāng)時(shí),

             (6分)

           (2),

        當(dāng)時(shí),;

        當(dāng)時(shí),,…………①

        ,………………………②

        得:

        也滿足上式,

        .(6分)

        22.解:(1)由題意橢圓的離心率

                

        ∴橢圓方程為……2分

        又點(diǎn)在橢圓上

                 ∴橢圓的方程為(4分)

        (2)設(shè)

        消去并整理得……6分

        ∵直線與橢圓有兩個(gè)交點(diǎn)

        ,即……8分

        中點(diǎn)的坐標(biāo)為……10分

        設(shè)的垂直平分線方程:

        ……12分

        將上式代入得

           即 

        的取值范圍為…………(8分)

         

         

         


        同步練習(xí)冊(cè)答案