某項(xiàng)賽事.需要進(jìn)行綜合素質(zhì)測(cè)試.每位參賽選手需回答3個(gè)問(wèn)題.組委會(huì)為每位選手都備有10道不同的題目以供選擇.其中有4道藝術(shù)類(lèi)題目.3道文學(xué)類(lèi)題目.3道體育類(lèi)題目.測(cè)試時(shí).每位選手從給定的10道題中不放回地隨機(jī)抽取3次.每次抽取一道題.回答完該題后.再抽取下一道題目作答. (1)求某選手在3次抽取中.只有第一次抽到的是藝術(shù)類(lèi)題目的概率, 查看更多

 

題目列表(包括答案和解析)

.(本小題滿分13分)

    在數(shù)列中,,,

(1)證明數(shù)列是等比數(shù)列;

(2)設(shè)數(shù)列的前項(xiàng)和,求的最大值.

 

 

查看答案和解析>>

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

(本小題滿分13分)

已知三棱錐,平面,,.

(Ⅰ)把△(及其內(nèi)部)繞所在直線旋轉(zhuǎn)一周形成一幾何體,求該幾何體的體積;

(Ⅱ)求二面角的余弦值.

 

 

查看答案和解析>>

(本小題滿分13分)

設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)在直線上,(為常數(shù),,).

(1)求

 (2)若數(shù)列的公比,數(shù)列滿足,,,求證:為等差數(shù)列,并求;

(3)設(shè)數(shù)列滿足,為數(shù)列的前項(xiàng)和,且存在實(shí)數(shù)滿足,求的最大值.

 

查看答案和解析>>

(本小題滿分13分)

等比數(shù)列{}的前項(xiàng)和為,已知5、2、成等差數(shù)列.

(Ⅰ)求{}的公比

(Ⅱ)當(dāng)-=3且時(shí),求

 

 

查看答案和解析>>

一、選擇題

ADBBD  ABBAD

二、填空題

11、        12、          13、C      14、21           15、          16、(-,0)

三、解答題

17、解:(1)    4分

f(x)的最小值為3

所以-a+=3,a=2

f(x)=-2sin(2x+)+5                                  6分

(2)因?yàn)?-)變?yōu)榱?),所以h=,k=-5

由圖象變換得=-2sin(2x-)            8分

由2kp+≤2x-≤2kp+    得kp+≤x≤kp+  所以單調(diào)增區(qū)間為

[kp+, kp+](k∈Z)       13分

18、解:(1)如圖,在四棱錐中,

BCAD,從而點(diǎn)D到平面PBC間的距離等于點(diǎn)A

到平面PBC的距離.         2分

∵∠ABC=,∴AB⊥BC,

PA⊥底面ABCD,∴PA⊥BC,

BC⊥平面  PAB,                 4分

∴平面PAB⊥平面PBC,交線為PB,

過(guò)AAEPB,垂足為E,則AE⊥平面PBC,

∴AE的長(zhǎng)等于點(diǎn)D到平面PBC的距離.

,∴

即點(diǎn)D到平面PBC的距離為.                 6分

(2)依題意依題意四棱錐P-ABCD的體積為

∴(BC+AD)AB×PA=,∴,                 8分

平面PDC在平面PAB上的射影為PAB,SPAB=,         10分

PC=,PD=,DC=,SPDC=a2,           12分

設(shè)平面PDC和平面PAB所成二面角為q,則cosq==

q=arccos.    13分

19、解:(1)從10 道不同的題目中不放回地隨機(jī)抽取3次,每次只抽取1道題,抽法總數(shù)為只有第一次抽到藝術(shù)類(lèi)數(shù)目的抽法總數(shù)為

                                   5分

(2)抽到體育類(lèi)題目的可能取值為0,1,2,3則

    

的分布列為

0

1

2

3

 

P

10分

                         11分

從而有                   13分

20、解:(1)設(shè)在公共點(diǎn)處的切線相同

                         1分

由題意知       ,∴    3分

得,,或(舍去)

即有                                        5分

(2)設(shè)在公共點(diǎn)處的切線相同

由題意知    ,∴

得,,或(舍去)      7分

即有            8分

,則,于是

當(dāng),即時(shí),;

當(dāng),即時(shí),                 11分

的最大值為,故的最大值為   13分

21、解:(1)∵且|PF1|+|PF2|=2a>|F1F2|(a>)

∴P的軌跡為以F1、F2為焦點(diǎn)的橢圓E,可設(shè)E:(其中b2=a2-5)    2分

在△PF1F2中,由余弦定理得

∴當(dāng)且僅當(dāng)| PF1 |=| PF2 |時(shí),| PF1 |?| PF2 |取最大值,         4分

此時(shí)cos∠F1PF2取最小值

令=a2=9,

∵c ∴b2=4故所求P的軌跡方程為           6分

(2)設(shè)N(s,t),M(x,y),則由,可得(xy-3)=λ(s,t-3)

x=λs,y=3+λ(t-3)           7分

而M、N在動(dòng)點(diǎn)P的軌跡上,故且

消去S得解得        10分

又| t |≤2,∴,解得,故λ的取值范圍是[,5]      12分

22、解:(1)由,得,代入,得

整理,得,從而有,

是首項(xiàng)為1,公差為1的等差數(shù)列,.          4分

(2),  ,

,

,

.                  8分

(3)∵

.

由(2)知,,

.     12分

 


同步練習(xí)冊(cè)答案