題目列表(包括答案和解析)
(09年湖北八校聯(lián)考文)(13分)過軸上動點引拋物線的兩條切線,,,為切點.
(Ⅰ)若切線,的斜率分別為和,求證:為定值,并求出定值.
(Ⅱ) 求證:直線恒過定點,并求出定點坐標.
(Ⅲ)當最小時,求的值.
本小題滿分14分)
過軸上動點引拋物線的兩條切線、,、為切點,設切線、的斜率分別為和.
(1)求證:;
(2)求證:直線恒過定點,并求出此定點坐標;
(3)設的面積為,當最小時,求的值.
(本小題滿分14分)
過軸上動點引拋物線的兩條切線、,、為切點,設切線,的斜率分別為和.
(1)求證:;
(2) 試問:直線是否經(jīng)過定點?若是,求出該定點坐標;若不是,請說明理由.
(本小題滿分12分)
過軸上動點引拋物線的兩條切線、,、為切點.
(1)若切線,的斜率分別為和,求證: 為定值,并求出定值;
(2)求證:直線恒過定點,并求出定點坐標;
(3)當最小時,求的值.
(本小題滿分14分)過軸上動點引拋物線的兩條切線、,、為切點,設切線、的斜率分別為和.
(1)求證:;
(2)求證:直線恒過定點,并求出此定點坐標;
(3)設的面積為,當最小時,求的值.
一、
二、11.210 12. 13.2 14. 15. 或或
三.解答題:
16. 解:(1)
……………………………………………………………3分
由題意得周期,故…………………………………………4分
又圖象過點,所以
即,而,所以
∴……………………………………………………6分
(2)當時,
∴當時,即時,是減函數(shù)
當時,即時,是增函數(shù)
∴函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是………………12分
17.解:記“甲回答對這道題”、“ 乙回答對這道題”、“丙回答對這道題”分別為事件、、,則,且有,即
∴……………………………………………………………………6分
(2)由(1),.
則甲、乙、丙三人中恰有兩人回答對該題的概率為:
……………………12分
18. 解法一 公理化法
(1)當時,取的中點,連接,因為為正三角形,則,由于為的中點時,
∵平面,∴平面,∴.………………………………………………4分
(2)當時,過作于,如圖所示,則底面,過作于,連結(jié),則,為二面角的平面角,
又,
又,
,即二面角的大小為.…………………………………………………8分
(3)設到面的距離為,則,平面,
即為點到平面的距離,
又,
即解得,
即到平面的距離為.…………………………………………………………………………12分
解法二 向量法
以為原點,為軸,過點與垂直的直線為軸,為軸,建立空間直角坐標系,如圖所示,
設,則
(1)由得,
則,
,………………………………4分
(2)當時,點的坐標是
設平面的一個法向量,則即
取,則,
又平面的一個法向量為
又由于二面角是一個銳角,則二面角的大小是.……………………8分
(3)設到面的距離為,
則
到平面的距離為.………………………………………………………………………12分
19. 解:(Ⅰ)由于,
故在點處的切線方程是…………………………………………2分
即,故與表示同一條直線,
,即,,.……6分
(Ⅱ) 由于,
則或,所以函數(shù)的單調(diào)區(qū)間是,…………………………8分
故或或
或或,或或
實數(shù)的取值范圍是.………………………………………………………12分
20. 解:(Ⅰ)設過與拋物線的相切的直線的斜率是,
則該切線的方程為:
由得
,
則都是方程的解,故………………………………………………4分
(Ⅱ)設
由于,故切線的方程是:,又由于點在上,則
則,
,同理
則直線的方程是,則直線過定點.………………………………………8分
(Ⅲ)要使最小,就是使得到直線的距離最小,
而到直線的距離,當且僅當即時取等號.………………………………………………………………10分
設
由得,則
.…………13分
21. 解:(Ⅰ)由題意知即……1分
…………3分
檢驗知時,結(jié)論也成立
故.………………………………………………………………………………4分
(Ⅱ) ①由于
故 ………………………………………………9分
②若,其中,則有,則,
故,
取(其中表示不超過的最大整數(shù)),則當時,. ………………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com