題目列表(包括答案和解析)
已知函數(shù).()
(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調遞增,
則在區(qū)間上恒成立. …………3分
即,而當時,,故. …………5分
所以. …………6分
(2)令,定義域為.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點,,
當,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當,即時,同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當時,函數(shù)的圖象恒在直線下方.
設集合M是滿足下列條件的函數(shù)f(x)的集合:
①f(x)的定義域為R;
②存在a<b,使f(x)在(-∞,a),(b,+∞)上分別單調遞增,在(a,b)上單調遞減.
(Ⅰ)設f1(x)=x·|x-2|,f2(x)=x3-3x2+3x,判斷f1(x),f2(x)是否在集合M中,并說明理由;
(Ⅱ)求證:對任意的實數(shù)t,f(x)=都在集合M中;
(Ⅲ)是否存在可導函數(shù)f(x),使得f(x)與g(x)=(x)-x都在集合M中,并且有相同的單調區(qū)間?請說明理由.
-x+t | x2+1 |
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com