A. B. C D. 查看更多

 

題目列表(包括答案和解析)

A.        B.     C.       D.不存在

查看答案和解析>>

     A          B           C            D

查看答案和解析>>

 (     )

    A.      B.      C.            D.

查看答案和解析>>

                                                           (    )

A.             B.               C.             D.

 

查看答案和解析>>

=(      )

A.              B.             C.             D.

 

查看答案和解析>>

一、選擇題:

DDCBA  BBDDA

ycy

11.0     12.(±1,0)    13.1    14.②④      15 706

三、解答題:

16.解:    2分

(Ⅰ)                                                        4分

(Ⅱ)由

單調(diào)遞增區(qū)間為                    8分

(Ⅲ)

                          12分

17.解:(Ⅰ)                        6分

    <noscript id="ran7g"><progress id="ran7g"><button id="ran7g"></button></progress></noscript>

      1. 18.解:(Ⅰ)證明:∵PA⊥平面ABCD   ∴PA⊥BD

        ∵ABCD為正方形   ∴AC⊥BD

        ∴BD⊥平面PAC又BD在平面BPD內(nèi),

        ∴平面PAC⊥平面BPD      6分

        (Ⅱ)解法一:在平面BCP內(nèi)作BN⊥PC垂足為N,連DN,

        ∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

        ∴∠BND為二面角B―PC―D的平面角,

        在△BND中,BN=DN=,BD=

        ∴cos∠BND =                             12分

        解法二:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立空間坐標系如圖,在平面BCP內(nèi)作BN⊥PC垂足為N連DN,

        ∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

        ∴∠BND為二面角B―PC―D的平面角                                8分

                                  10分

                   12分

        解法三:以A為原點,AB、AD、AP所在直線分別為x軸、y軸、z軸建立如圖空間坐標系,作AM⊥PB于M、AN⊥PD于N,易證AM⊥平面PBC,AN⊥平面PDC,

              <span id="ran7g"></span>

                                          10分

              ∵二面角B―PC―D的平面角與∠MAN互補

              ∴二面角B―PC―D的余弦值為                                 12分

              19.解:(Ⅰ)

                        4分

              又∵當n = 1時,上式也成立,             6分

              (Ⅱ)              8分

                   ①

                   ②

              ①-②得:

                                                           12分

              20.解:(Ⅰ)由MAB的中點,

              A、B兩點的坐標分別為

              ,

              M點的坐標為                                 4分

              M點的直線l上:

                                                                7分

              (Ⅱ)由(Ⅰ)知,不妨設橢圓的一個焦點坐標為關于直線l

              上的對稱點為,

              則有                       10分

              由已知

              ,∴所求的橢圓的方程為                       12分

              21.解:(Ⅰ)∵函數(shù)f(x)圖象關于原點對稱,∴對任意實數(shù)x,

                                          2分

                                   4分

              (Ⅱ)當時,圖象上不存在這樣的兩點使結論成立               5分

              假設圖象上存在兩點,使得過此兩點處的切線互相垂直,則由

              ,知兩點處的切線斜率分別為:

              此與(*)相矛盾,故假設不成立                                   9分

              (Ⅲ)證明:

              在[-1,1]上是減函數(shù),且

              ∴在[-1,1]上,時,

                  14分


              同步練習冊答案