2. 答卷前將密封線內(nèi)的項目填寫清楚.得 分評卷人 查看更多

 

題目列表(包括答案和解析)

(2008•成都二模)(新華網(wǎng))反興奮劑的大敵、服藥者的寵兒--HGH(人體生長激素),有望在8月的北京奧運會上首次“伏法”.據(jù)悉,國際體育界研究近10年仍不見顯著成效的HGH檢測,日前已取得新的進(jìn)展,新生產(chǎn)的檢測設(shè)備有希望在北京奧運會上使用.若組委會計劃對參加某項田徑比賽的120名運動員的血樣進(jìn)行突擊檢查,采用如下化驗
方法:將所有待檢運動員分成若干小組,每組m個人,再把每個人的血樣分成兩份,化驗時將每個小組內(nèi)的m個人的血樣各一份混合在一起進(jìn)行化驗,若結(jié)果中不含HGH成分,那么該組的m個人只需化驗這一次就算檢驗合格;如果結(jié)果中含有HGH成分,那么需要對該組進(jìn)行再次檢驗,即需要把這m個人的另一份血樣逐個進(jìn)行化驗,才能最終確定是否檢驗合格,這時,對這m個人一共需要進(jìn)行m+1次化驗.假定對所有人來說,化驗結(jié)果中含有HGH成分的概率均為
110
.當(dāng)m=3時,
(1)求一個小組只需經(jīng)過一次檢驗就合格的概率;
(2)設(shè)一個小組的檢驗次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個程序框圖.
(1)將判斷框內(nèi)的條件補(bǔ)充完整;
(2)請用直到型循環(huán)結(jié)構(gòu)改寫流程圖.

查看答案和解析>>

組委會計劃對參加某項田徑比賽的12名運動員的血樣進(jìn)行突擊檢驗,檢查是否含有興奮劑HGH成分.采用如下檢測方法:將所有待檢運動員分成4個小組,每組3個人,再把每個人的血樣分成兩份,化驗室將每個小組內(nèi)的3個人的血樣各一份混合在一起進(jìn)行化驗,若結(jié)果中不含HGH成分,那么該組的3個人只需化驗這一次就算合格;如果結(jié)果中含HGH成分,那么需對該組進(jìn)行再次檢驗,即需要把這3個人的另一份血樣逐個進(jìn)行化驗,才能最終確定是否檢驗合格,這時,對這3個人一共進(jìn)行了4次化驗,假定對所有人來說,化驗結(jié)果中含有HGH成分的概率均為
110

(Ⅰ)求一個小組只需經(jīng)過一次檢驗就合格的概率;
(Ⅱ)設(shè)一個小組檢驗次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望;
(Ⅲ)至少有兩個小組只需經(jīng)過一次檢驗就合格的概率.(精確到0.01,參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

.假定平面內(nèi)的一條直線將該平面內(nèi)的一個區(qū)域分成面積相等的兩個區(qū)域,則稱這條直線平分這個區(qū)域.如圖,是平面內(nèi)的任意一個封閉區(qū)域.現(xiàn)給出如下結(jié)論:

         ① 過平面內(nèi)的任意一點至少存在一條直線平分區(qū)域;

         ②過平面內(nèi)的任意一點至多存在一條直線平分區(qū)域

         ③ 過區(qū)域內(nèi)的任意一點至少存在兩條直線平分區(qū)域;

④ 過區(qū)域內(nèi)的某一點可能存在無數(shù)條直線平分區(qū)域

         其中結(jié)論正確的是

       A.①③                              B.①④                              C.②③                              D.③④

 

查看答案和解析>>

假定平面內(nèi)的一條直線將該平面內(nèi)的一個區(qū)域分成面積相等的兩個區(qū)域,則稱這條直線平分這個區(qū)域.如圖,是平面內(nèi)的任意一個封閉區(qū)域.現(xiàn)給出如下結(jié)論:

①        過平面內(nèi)的任意一點至少存在一條直線平分區(qū)域;

②        過平面內(nèi)的任意一點至多存在一條直線平分區(qū)域

③        區(qū)域內(nèi)的任意一點至少存在兩條直線平分區(qū)域;

④        平面內(nèi)存在互相垂直的兩條直線平分區(qū)域成四份.

其中正確結(jié)論的序號是              

 

查看答案和解析>>

 

 

 

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有 一項是符合題目要求的。

1.B  2.D  3.B  4.C  5.C  6.A  7.A  8.B  9.D 10.C

二、填空題:本大題共5個小題,每小題4分,共20分,把答案填在題中的橫線上。

11.6    12.2   13.80   14.  15.4

三、解答題:本大題共6小題,共75分。解答應(yīng)寫文字說明,證明過程或演算步驟.

16.解(1)證明:由

………………………………………………4分

(2)由正弦定理得     ∴……① …………6分

  又,=2,       ∴ …………② …………8分

解①②得 ,           …………………………………………10分

  .                                       …………………12分

 

17.解:(1)由, 即=1 , ∴=3,……2分

………………………4分

(2)設(shè),∴  ………①

………②………………………………7分

①-②得

           =

           =……………………………………………10分

, ∴.……………………12分

 

 

 

18.解:(1)分別取BE、AB的中點M、N,

連接PM、MC,PN、NC,則PM=1,MB=,BC=,

∴MC=,而PN=MB=

NC=,∴PC=,…………………………4分

故所求PC與AB所成角的余弦值為………6分

(2)連結(jié)AP,∵二面角E-AB-C是直二面角,且AC⊥AB

∴∠BAP即為所求二面角的平面角,即∠BAP=300……8分

在RtΔBAF中,tan∠ABF=,∴∠ABF=600,

故BF⊥AP,    …………………………………………………………10分

又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC…………………………12分

 

18.另解:分別以AB、AC、AF為x、y、z軸建立直角坐標(biāo)系,

,

  ∴

  ∴

故異面直線PC與AB所成的角的余弦值為。

(2)分別設(shè)平面ABC和平面PAC的法向量分別為,P點坐標(biāo)設(shè)為,則,則由

,

再由

,

,即

BF⊥AP,BF⊥AC∴BF⊥平面PAC

19.解:(1)當(dāng)0<x≤10時,……2分

當(dāng)x >10時,…………4分

…………………………………5分

(2)①當(dāng)0<x≤10時,由

當(dāng)

∴當(dāng)x=9時,W取最大值,且……9分

②當(dāng)x>10時,W=98

當(dāng)且僅當(dāng)…………………………12分

綜合①、②知x=9時,W取最大值.

所以當(dāng)年產(chǎn)量為9千件時,該公司在這一品牌服裝生產(chǎn)中獲利最大.……13分

 

20.解: (1)………………………2分

   ………4分

  

(也可寫成閉區(qū)間)…………6分

(2)  ……………………8分

不等式組所確定的平面區(qū)域如圖所示!10分

設(shè)

……………………………………13分

 

 

21.(1)B(0,-b)

,即D為線段FP的中點.,

……………………………2分

,即A、B、D共線.

而 

,得,………………………4分

………………………………5分

 

(2)∵=2,而,∴,

故雙曲線的方程為………①………………………………6分

∴B、的坐標(biāo)為(0,-1)      

 

設(shè)的方程為…………②

②代入①得

由題意得:   得:…………9分

設(shè)M、N的坐標(biāo)分別為(x1,y1) 、(x2,y2)

      

       ………11分

整理得, 解得: (舍去)

∴所求的方程為………………………………13分

 

 

 

 

 

 

 

 

 

 

 


同步練習(xí)冊答案