又因為平面, 查看更多

 

題目列表(包括答案和解析)

平面幾何中,同垂直于一條直線的兩直線________.那么,類比到空間中有:(1)同垂直于一條直線的兩條直線平行,這個命題成立嗎?______.為什么?_______.(2)同垂直于一個平面的兩條直線_________.這個命題是__________(填:真、假)命題.原因是:已知a⊥平面α,b⊥平面α,求證:ab.假設(shè)b不平行于a,設(shè)bα=O,b′是經(jīng)過點O與直線_______平行的直線.∵a_______b′,aα ,?∴b′________α,?即經(jīng)過同一點O的兩條直線________、_______都垂直于平面α,這是不可能的.因此,________.這種證明的方法是________法.?

命題(2)的逆命題是:如果兩條平行直線中的一條垂直于一個平面,那么另一條也_________這個平面.用數(shù)學(xué)符號表示:已知a_____b,a_______平面α,求證:b______α.?

證明:設(shè)m是α內(nèi)的任意一條直線.∵a________α,mα,?

?∴a________m.又∵a_______b,∴________bm.又∵mα,m是_______,∴由線面垂直的__________可知b______α.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

2.A解析:由知函數(shù)在上有零點,又因為函數(shù)在(0,+)上是減函數(shù),所以函數(shù)y=f(x) 在(0,+)上有且只有一個零點不妨設(shè)為,則,又因為函數(shù)是偶函數(shù),所以=0并且函數(shù)在(0,+)上是減函數(shù),因此-是(-,0)上的唯一零點,所以函數(shù)共有兩個零點

下列敘述中,是隨機變量的有(    )

①某工廠加工的零件,實際尺寸與規(guī)定尺寸之差;②標(biāo)準(zhǔn)狀態(tài)下,水沸騰的溫度;③某大橋一天經(jīng)過的車輛數(shù);④向平面上投擲一點,此點坐標(biāo).

A.②③         B.①②     C.①③④      。模佗

查看答案和解析>>

如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)證明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

【解析】(Ⅰ)因為

是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)設(shè)AC和BD相交于點O,連接PO,由(Ⅰ)知,BD平面PAC,

所以是直線PD和平面PAC所成的角,從而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因為四邊形ABCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積

在等腰三角形AOD中,

所以

故四棱錐的體積為.

【點評】本題考查空間直線垂直關(guān)系的證明,考查空間角的應(yīng)用,及幾何體體積計算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積

 

查看答案和解析>>

如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

(Ⅱ)若為側(cè)棱PB的中點,求直線AE與底面所成角的正弦值.

【解析】第一問中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二問中結(jié)合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

 (Ⅰ) 證明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已證平面PBC,所以,即,

,

于是

所以直線AE與底面ABC 所成角的正弦值為

 

查看答案和解析>>


同步練習(xí)冊答案