22 查看更多

 

題目列表(包括答案和解析)

 (22) (本小題滿分14分)

如圖,橢圓ab>0)的一個焦點為F(1,0),且過點(2,0).

(Ⅰ)求橢圓C的方程;

(Ⅱ)若AB為垂直于x軸的動弦,直線l:x=4與x軸交于點N,直線AFBN交于點M.

 (ⅰ)求證:點M恒在橢圓C上;

(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

(本小題12分)

已知某商品的價格(元)與需求量(件)之間的關(guān)系有如下一組數(shù)據(jù):

14

16

18

20

22

12

10

7

5

3

(1)畫出關(guān)于的散點圖

(2)用最小二乘法求出回歸直線方程

(3)計算的值,并說明回歸模型擬合程度的好壞。

 

查看答案和解析>>

(本小題12分)
已知某商品的價格(元)與需求量(件)之間的關(guān)系有如下一組數(shù)據(jù):


14
16
18
20
22

12
10
7
5
3
(1)畫出關(guān)于的散點圖
(2)用最小二乘法求出回歸直線方程
(3)計算的值,并說明回歸模型擬合程度的好壞。

查看答案和解析>>

(本小題滿分14分)

某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日    期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差x(°C)

10

11

13

12

8

6

就診人數(shù)y(個)

22

25

29

26

16

12

    該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗.

    (Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;(5分)

    (Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(6分)

    (Ⅲ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?(3分)

    (參考公式: )

查看答案和解析>>

(本小題滿分12分)在第9屆校園文化藝術(shù)節(jié)棋類比賽項目報名過程中,我校高二(2)班共有16名男生和14名女生預(yù)報名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會圍棋.

(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:

 

會圍棋

不會圍棋

總計

 

 

 

 

 

 

總計

 

 

30

并回答能否在犯錯的概率不超過0.10的前提下認(rèn)為性別與會圍棋有關(guān)?

參考公式:其中n=a+b+c+d

參考數(shù)據(jù):

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

(Ⅱ)若從會圍棋的選手中隨機抽取3人成立該班圍棋代表隊,則該代表隊中既有男又

有女的概率是多少?

(Ⅲ)若從14名女棋手中隨機抽取2人參加棋類比賽,記會圍棋的人數(shù)為,求的期望.

 

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 當(dāng)時,函數(shù)的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結(jié)CBCO,則OB C的中點,連結(jié)DO。

∵在△AC中,O、D均為中點,

ADO…………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結(jié)CBOC的中點,連結(jié)DO,則     

     O.       =

A平面BD

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

 

              令y = -1,解得m = (,-1,0)

              二面角DBC的余弦值為cos<n , m>=

        ∴二面角DBC的大小為arc cos               …………12分

        20、解: 解:

             (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

                 由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

                 a=-,b=-2,…………  3分

        f′(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

        (-∞,-

        (-,1)

        1

        (1,+∞)

        f′(x)

        +

        0

        0

        +

        f(x)

         

        極大值

        極小值

        所以函數(shù)f(x)的遞增區(qū)間為(-∞,-)與(1,+∞);

        遞減區(qū)間為(-,1).             …………  6分

        (2)f(x)=x3-x2-2x+c  x∈[-1,2],當(dāng)x=-時,f(x)=+c為極大值,

        而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

        要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

        解得c<-1或c>2.               …………  12分

        21、(I)解:方程的兩個根為,

        當(dāng)時,,所以;

        當(dāng)時,,,所以;

        當(dāng)時,,所以時;

        當(dāng)時,,所以.      …………  4分

        (II)解:

        .                          …………  8分

        (Ⅲ)=                       …………  12分

        22、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應(yīng)準(zhǔn)線,

        離心率為的橢圓

        設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

        ,,∴點在x軸上,且,且3

        解之得:,     ∴坐標(biāo)原點為橢圓的對稱中心 

        ∴動點M的軌跡方程為:        …………  4分

        (II)設(shè),設(shè)直線的方程為,代入

                           ………… 5分

        , 

            ………… 6分

        ,,

        ,

         

        解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

        (Ⅲ)設(shè),由知, 

        直線的斜率為    ………… 10分

        當(dāng)時,;

        當(dāng)時,,

        時取“=”)或時取“=”),

                     ………… 12分            

        綜上所述                  ………… 14分 

         


        同步練習(xí)冊答案