題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
一、選擇題:1-5 BABAC 6-10 DAACC
二、填空題:11.625 12. 13.
14. 15.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
解:(1)由題意知
的夾角
(2)
有最小值
的最小值是
17.(本小題滿分12分)
(1)證法一:在中,是等腰直角的中位線,
在四棱錐中,,, 平面,
又平面,
證法二:同證法一 平面,
又平面,
(2)在直角梯形中,,
又垂直平分,
∴
三棱錐的體積為
18.(本小題滿分14分)
解:,
因為函數(shù)在處的切線斜率為-3,
所以,即
又得
(1)函數(shù)在時有極值,所以
解得
所以.
(2)因為函數(shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)
在區(qū)間上的值恒大于或等于零
則得,所以實數(shù)的取值范圍為
19.(本小題滿分14分)
解:(1)由題設(shè)知
由于,則有,所以點的坐標(biāo)為
故所在直線方程為
所以坐標(biāo)原點到直線的距離為
又,所以 解得:
所求橢圓的方程為
(2)由題意可知直線的斜率存在,設(shè)直線斜率為
直線的方程為,則有
設(shè),由于、、三點共線,且
根據(jù)題意得,解得或
又在橢圓上,故或
解得,綜上,直線的斜率為或
20.(本小題滿分14分)
解: 在實施規(guī)劃前, 由題設(shè)(萬元),
知每年只須投入40萬, 即可獲得最大利潤100萬元.
則10年的總利潤為W1=100×10=1000(萬元).
實施規(guī)劃后的前5年中, 由題設(shè)知,
每年投入30萬元時, 有最大利潤(萬元).
所以前5年的利潤和為(萬元).
設(shè)在公路通車的后5年中, 每年用x萬元投資于本地的銷售, 而用剩下的(60-x)萬元于外地區(qū)的銷售投資, 則其總利潤為:
.
當(dāng)x=30時,W2|max=4950(萬元).
從而 , 該規(guī)劃方案有極大實施價值.
21.(本小題滿分14分)
解:(1)設(shè)
,又
(2)由已知得
兩式相減得,
當(dāng).若
(3)由,
.
若
可知,.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com