題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題:1-5 BABAC 6-10 DAACC
二、填空題:11.625 12. 13.
14. 15.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過(guò)程和演算步驟.
16.(本小題滿分12分)
解:(1)由題意知
的夾角
(2)
有最小值
的最小值是
17.(本小題滿分12分)
(1)證法一:在中,是等腰直角的中位線,
在四棱錐中,,, 平面,
又平面,
證法二:同證法一 平面,
又平面,
(2)在直角梯形中,,
又垂直平分,
∴
三棱錐的體積為
18.(本小題滿分14分)
解:,
因?yàn)楹瘮?shù)在處的切線斜率為-3,
所以,即
又得
(1)函數(shù)在時(shí)有極值,所以
解得
所以.
(2)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)
在區(qū)間上的值恒大于或等于零
則得,所以實(shí)數(shù)的取值范圍為
19.(本小題滿分14分)
解:(1)由題設(shè)知
由于,則有,所以點(diǎn)的坐標(biāo)為
故所在直線方程為
所以坐標(biāo)原點(diǎn)到直線的距離為
又,所以 解得:
所求橢圓的方程為
(2)由題意可知直線的斜率存在,設(shè)直線斜率為
直線的方程為,則有
設(shè),由于、、三點(diǎn)共線,且
根據(jù)題意得,解得或
又在橢圓上,故或
解得,綜上,直線的斜率為或
20.(本小題滿分14分)
解: 在實(shí)施規(guī)劃前, 由題設(shè)(萬(wàn)元),
知每年只須投入40萬(wàn), 即可獲得最大利潤(rùn)100萬(wàn)元.
則10年的總利潤(rùn)為W1=100×10=1000(萬(wàn)元).
實(shí)施規(guī)劃后的前5年中, 由題設(shè)知,
每年投入30萬(wàn)元時(shí), 有最大利潤(rùn)(萬(wàn)元).
所以前5年的利潤(rùn)和為(萬(wàn)元).
設(shè)在公路通車的后5年中, 每年用x萬(wàn)元投資于本地的銷售, 而用剩下的(60-x)萬(wàn)元于外地區(qū)的銷售投資, 則其總利潤(rùn)為:
.
當(dāng)x=30時(shí),W2|max=4950(萬(wàn)元).
從而 , 該規(guī)劃方案有極大實(shí)施價(jià)值.
21.(本小題滿分14分)
解:(1)設(shè)
,又
(2)由已知得
兩式相減得,
當(dāng).若
(3)由,
.
若
可知,.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com