題目列表(包括答案和解析)
電磁感應中的功率問題、自感
1、電磁感應中的電路問題在電磁感應中,切割磁感線的導體或磁通量的變化的回路將產生________.該導體或回路相當于________(它們的電阻為電源的內阻),將它們接上電容器,便可使電容器________;將它們接上電阻等用電器,在回路中形成________,便可對用電器供電.因此,電磁感應問題往往和電路聯(lián)系在一起,解決這類問題的基本方法是:
(1)用法拉第電磁感應定律和楞次定律確定感應電流的大小和方向.
(2)畫出等效電路圖
(3)應用全電路歐姆定律、串并聯(lián)電路的性質、電功率等公式聯(lián)立求解.
2、自感
①、自感現(xiàn)象:自感現(xiàn)象是一種特殊的電磁感應現(xiàn)象,它是由于導體本身的電流發(fā)生________時而產生的電磁感應現(xiàn)象.自感現(xiàn)象遵循電磁感應的所有規(guī)律.
②、自感電動勢的方向:由楞次定律可知,自感電動勢總是________原來導體中電流的變化.當回路中的電流增加時,自感電動勢和原來電流的方向________;當回路中的電流減小時,自感電動勢和原來電流的方向________.自感對電路中的電流變化有________作用,使電流不能________.
③、自感系數(shù):它由線圈________的性質決定.線圈越長,單位長度上線圈的匝數(shù)越多,截面積越大,它的自感系數(shù)越________.線圈中插入鐵芯,自感系數(shù)增大很多,自感系數(shù)在國際單位制中的單位是________.
第十部分 磁場
第一講 基本知識介紹
《磁場》部分在奧賽考剛中的考點很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場引進定量計算;b、對帶電粒子在復合場中的運動進行了更深入的分析。
一、磁場與安培力
1、磁場
a、永磁體、電流磁場→磁現(xiàn)象的電本質
b、磁感強度、磁通量
c、穩(wěn)恒電流的磁場
*畢奧-薩伐爾定律(Biot-Savart law):對于電流強度為I 、長度為dI的導體元段,在距離為r的點激發(fā)的“元磁感應強度”為dB 。矢量式d= k,(d表示導體元段的方向沿電流的方向、為導體元段到考查點的方向矢量);或用大小關系式dB = k結合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應用畢薩定律再結合矢量疊加原理,可以求解任何形狀導線在任何位置激發(fā)的磁感強度。
畢薩定律應用在“無限長”直導線的結論:B = 2k ;
*畢薩定律應用在環(huán)形電流垂直中心軸線上的結論:B = 2πkI ;
*畢薩定律應用在“無限長”螺線管內部的結論:B = 2πknI 。其中n為單位長度螺線管的匝數(shù)。
2、安培力
a、對直導體,矢量式為 = I;或表達為大小關系式 F = BILsinθ再結合“左手定則”解決方向問題(θ為B與L的夾角)。
b、彎曲導體的安培力
⑴整體合力
折線導體所受安培力的合力等于連接始末端連線導體(電流不變)的的安培力。
證明:參照圖9-1,令MN段導體的安培力F1與NO段導體的安培力F2的合力為F,則F的大小為
F =
= BI
= BI
關于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個證明很容易),故F在MO上的垂足就是MO的中點了。
證畢。
由于連續(xù)彎曲的導體可以看成是無窮多元段直線導體的折合,所以,關于折線導體整體合力的結論也適用于彎曲導體。(說明:這個結論只適用于勻強磁場。)
⑵導體的內張力
彎曲導體在平衡或加速的情形下,均會出現(xiàn)內張力,具體分析時,可將導體在被考查點切斷,再將被切斷的某一部分隔離,列平衡方程或動力學方程求解。
c、勻強磁場對線圈的轉矩
如圖9-2所示,當一個矩形線圈(線圈面積為S、通以恒定電流I)放入勻強磁場中,且磁場B的方向平行線圈平面時,線圈受安培力將轉動(并自動選擇垂直B的中心軸OO′,因為質心無加速度),此瞬時的力矩為
M = BIS
幾種情形的討論——
⑴增加匝數(shù)至N ,則 M = NBIS ;
⑵轉軸平移,結論不變(證明從略);
⑶線圈形狀改變,結論不變(證明從略);
*⑷磁場平行線圈平面相對原磁場方向旋轉α角,則M = BIScosα ,如圖9-3;
證明:當α = 90°時,顯然M = 0 ,而磁場是可以分解的,只有垂直轉軸的的分量Bcosα才能產生力矩…
⑸磁場B垂直O(jiān)O′軸相對線圈平面旋轉β角,則M = BIScosβ ,如圖9-4。
證明:當β = 90°時,顯然M = 0 ,而磁場是可以分解的,只有平行線圈平面的的分量Bcosβ才能產生力矩…
說明:在默認的情況下,討論線圈的轉矩時,認為線圈的轉軸垂直磁場。如果沒有人為設定,而是讓安培力自行選定轉軸,這時的力矩稱為力偶矩。
二、洛侖茲力
1、概念與規(guī)律
a、 = q,或展開為f = qvBsinθ再結合左、右手定則確定方向(其中θ為與的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。
b、能量性質
由于總垂直與確定的平面,故總垂直 ,只能起到改變速度方向的作用。結論:洛侖茲力可對帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭恿堪l(fā)生改變卻不能使其動能發(fā)生改變。
問題:安培力可以做功,為什么洛侖茲力不能做功?
解說:應該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個問題:(1)導體靜止時,所有粒子的洛侖茲力的合力等于安培力(這個證明從略);(2)導體運動時,粒子參與的是沿導體棒的運動v1和導體運動v2的合運動,其合速度為v ,這時的洛侖茲力f垂直v而安培力垂直導體棒,它們是不可能相等的,只能說安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。
很顯然,f1的合力(安培力)做正功,而f不做功(或者說f1的正功和f2的負功的代數(shù)和為零)。(事實上,由于電子定向移動速率v1在10?5m/s數(shù)量級,而v2一般都在10?2m/s數(shù)量級以上,致使f1只是f的一個極小分量。)
☆如果從能量的角度看這個問題,當導體棒放在光滑的導軌上時(參看圖9-6),導體棒必獲得動能,這個動能是怎么轉化來的呢?
若先將導體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉化為回路的焦耳熱。而將導體棒釋放后,導體棒受安培力加速,將形成感應電動勢(反電動勢)。動力學分析可知,導體棒的最后穩(wěn)定狀態(tài)是勻速運動(感應電動勢等于電源電動勢,回路電流為零)。由于達到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時間內發(fā)的焦耳熱將比導體棒被卡住時少。所以,導體棒動能的增加是以回路焦耳熱的減少為代價的。
2、僅受洛侖茲力的帶電粒子運動
a、⊥時,勻速圓周運動,半徑r = ,周期T =
b、與成一般夾角θ時,做等螺距螺旋運動,半徑r = ,螺距d =
這個結論的證明一般是將分解…(過程從略)。
☆但也有一個問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運動情形似乎就不一樣了——在垂直B2的平面內做圓周運動?
其實,在圖9-7中,B1平行v只是一種暫時的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當B1施加了洛侖茲力后,粒子的“圓周運動”就無法達成了。(而在分解v的處理中,這種局面是不會出現(xiàn)的。)
3、磁聚焦
a、結構:見圖9-8,K和G分別為陰極和控制極,A為陽極加共軸限制膜片,螺線管提供勻強磁場。
b、原理:由于控制極和共軸膜片的存在,電子進磁場的發(fā)散角極小,即速度和磁場的夾角θ極小,各粒子做螺旋運動時可以認為螺距彼此相等(半徑可以不等),故所有粒子會“聚焦”在熒光屏上的P點。
4、回旋加速器
a、結構&原理(注意加速時間應忽略)
b、磁場與交變電場頻率的關系
因回旋周期T和交變電場周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、質譜儀
速度選擇器&粒子圓周運動,和高考要求相同。
第二講 典型例題解析
一、磁場與安培力的計算
【例題1】兩根無限長的平行直導線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導線之間且在兩導線所在平面內的、與a導線相距10cm的P點的磁感強度。
【解說】這是一個關于畢薩定律的簡單應用。解題過程從略。
【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。
【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強度大小為B 、方向垂直線圈平面的勻強磁場中,求由于安培力而引起的線圈內張力。
【解說】本題有兩種解法。
方法一:隔離一小段弧,對應圓心角θ ,則弧長L = θR 。因為θ →
1. C 2. B 3. C 4. ABC 5. AC
6. AD 7. C 8. AB 9. D 10. A
11. 0.63
12. 鎮(zhèn)流器的自感現(xiàn)象 斷開瞬間 只有在電路剛斷開時才能產生很高的自感電動勢使人產生觸電的感覺
13. Br2ω/2 ,0
14. 解:(1)由題意知,帶電粒子從C孔進入,與筒壁碰撞兩次再從C孔射出經歷的時間為最短,由,粒子由C孔進入磁場,在磁場中做勻速圓周運動的速度,由,即,得
(2)粒子從的加速度為,,粒子從的時間為;粒子在磁場中運動的時間為,將(1)求得的B值代入,得,求得
15. 解:(1)感應電動勢的最大值:
(2)由歐姆定律得電流的最大值:=0.16A
電流的有效值=0.11A
(3)用電器上消耗的電功率:
16. 解:(1)ab脫離EF前,電路中的磁通量的變化為
平均感應電動勢為,
有
(2)ab脫離EF時,回路中通過電流最大,即,
ab脫離EF后,電路中不在有電流,并且ab倒下過程中只有小球的重力做功,機械能守恒,即
ab上各處切割磁感線的速度是不同的,其等效切割速度應等于ab中點的速度
聯(lián)立解得
17.解:(1)經過時間后,MN運動的距離為,由圖可知直導線MN在閉合回路中的有效長度為,
此時感應電動勢的瞬時值:(V)
(2)此時閉合回路中的總長度為:
閉合回路中的總電阻:
根據全電路的歐姆定律,電流大。(A),由右手定律可得電流方向在閉合回路中是逆時針方向
(3)此時MN中不在閉合回路中的導線MP的長度為
產生的電動勢(V)
在閉合回路中的導線PN兩端電壓(V)
所以MN兩端的電壓
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com