∴的極小值為=-2. --------------6分 查看更多

 

題目列表(包括答案和解析)

(6分) 已知函數(shù),當(dāng)時,的極大值為7;當(dāng)時,有極小值.求(1)的值; (2)函數(shù)的極小值.

 

查看答案和解析>>

(6分)已知函數(shù),當(dāng)時,的極大值為7;當(dāng)時,有極小值.求(1)的值; (2)函數(shù)的極小值.

查看答案和解析>>

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,CP是圓O的切線,P為切點,直線CO交圓O于A,B兩點,AD⊥CP,垂足為D.
求證:∠DAP=∠BAP.
B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-\frac{π}{6})=a截得的弦長為2
3
求實數(shù)a的值.
D.選修4-5:不等式選講已知a,b是正數(shù),求證:a2+4b2+
1
ab
≥4.

查看答案和解析>>

已知函數(shù)

(1)求在區(qū)間上的最大值;

(2)若函數(shù)在區(qū)間上存在遞減區(qū)間,求實數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用,求解函數(shù)的最值。第一問中,利用導(dǎo)數(shù)求解函數(shù)的最值,首先求解導(dǎo)數(shù),然后利用極值和端點值比較大小,得到結(jié)論。第二問中,我們利用函數(shù)在上存在遞減區(qū)間,即上有解,即,即可,可得到。

解:(1), 

,解得                 ……………3分

,上為增函數(shù),在上為減函數(shù),

            

 

 

 

 

 

.          …………6分

(2)

上存在遞減區(qū)間,上有解,……9分

上有解,

所以,實數(shù)的取值范圍為  

 

查看答案和解析>>

以下四個說法:
①平均數(shù)不受少數(shù)幾個極端值的影響,中位數(shù)受樣本中的每一個數(shù)據(jù)影響;
②同時拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大;
③甲、乙兩人進(jìn)行下棋比賽,甲獲勝的概率是0.4,兩人下成和棋的概率是0.2,則甲不輸?shù)母怕适?.6;
④在頻率分布直方圖中,小矩形的高表示頻率.
正確的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>


同步練習(xí)冊答案