由|RP|=|RQ|得,------------8分 查看更多

 

題目列表(包括答案和解析)

從方程
x=2t
y=t-3
中消去t,此過程如下:
由x=2t得t=
x
2
,將t=
x
2
代入y=t-3中,得到y=
1
2
x-3

仿照上述方法,將方程
x=3cosα
y=2sinα
中的α消去,并說明它表示什么圖形,求出其焦點(diǎn).

查看答案和解析>>

由tanα=t得sinα=±
t
1+t2
其符號(hào)是(  )
A、當(dāng)α在一、二象限取正,在三、四象限取負(fù)
B、當(dāng)α在一、四象限取正,在二、三象限取負(fù)
C、在α在一、三象限取正,在二、四象限取負(fù)
D、當(dāng)α僅在第一象取取正

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥側(cè)面AC1
精英家教網(wǎng)
(1)求證:BE=EB1;
(2)若AA1=A1B1;求平面A1EC與平面A1B1C1所成二面角(銳角)的度數(shù).
注意:在下面橫線上填寫適當(dāng)內(nèi)容,使之成為(Ⅰ)的完整證明,并解答(Ⅱ).
精英家教網(wǎng)
(1)證明:在截面A1EC內(nèi),過E作EG⊥A1C,G是垂足.
①∵
 

∴EG⊥側(cè)面AC1;取AC的中點(diǎn)F,連接BF,F(xiàn)G,由AB=BC得BF⊥AC,
②∵
 

∴BF⊥側(cè)面AC1;得BF∥EG,BF、EG確定一個(gè)平面,交側(cè)面AC1于FG.
③∵
 

∴BE∥FG,四邊形BEGF是平行四邊形,BE=FG,
④∵
 

∴FG∥AA1,△AA1C∽△FGC,
⑤∵
 

FG=
1
2
AA1=
1
2
BB1
,即BE=
1
2
BB1,故BE=EB1

查看答案和解析>>

已知函數(shù)f(x)=3sin(2x-
π
3
)
的圖象為C,關(guān)于函數(shù)f(x)及其圖象的判斷如下:
①圖象C關(guān)于直線x=
11π
2
對(duì)稱;
②圖象C關(guān)于點(diǎn)(
3
,0)
對(duì)稱;
③由y=3sin2x得圖象向右平移
π
3
個(gè)單位長(zhǎng)度可以得到圖象C;
④函數(shù)f(x)在區(qū)間(-
π
12
12
)內(nèi)是增函數(shù);
⑤函數(shù)|f(x)+1|的最小正周期為
π
2

其中正確的結(jié)論序號(hào)是
②④
②④
.(把你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設(shè)
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關(guān)于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>


同步練習(xí)冊(cè)答案