題目列表(包括答案和解析)
(本小題滿分16分)
如圖,已知拋物線的焦點為,是拋物線上橫坐標(biāo)為8且位于軸上方的點. 到拋物線準(zhǔn)線的距離等于10,過作垂直于軸,垂足為,的中點為(為坐標(biāo)原點).
(Ⅰ)求拋物線的方程;
(Ⅱ)過作,垂足為,求點的坐標(biāo);
(Ⅲ)以為圓心,4為半徑作圓,點是軸上的一個動點,試討論直線與圓的位置關(guān)系.
如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.
(Ⅰ)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標(biāo);
(Ⅱ)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為P,且()p2=m,m∈,求(Ⅰ)中切點T到直線PQ的距離的最小值.
在極坐標(biāo)系中,圓:和直線相交于、兩點,求線段的長
【解析】本試題主要考查了極坐標(biāo)系與參數(shù)方程的運用。先將圓的極坐標(biāo)方程圓: 即 化為直角坐標(biāo)方程即
然后利用直線 即,得到圓心到直線的距離,從而利用勾股定理求解弦長AB。
解:分別將圓和直線的極坐標(biāo)方程化為直角坐標(biāo)方程:
圓: 即 即 ,
即, ∴ 圓心, ---------3分
直線 即, ------6分
則圓心到直線的距離,----------8分
則 即所求弦長為
已知橢圓E:的離心率為,右焦點為F,且橢圓E上的點到點F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點分別為A,B,過點A的直線l與橢圓E及直線x=8分別相交于點M,N.
(。┊(dāng)過A,F(xiàn),N三點的圓半徑最小時,求這個圓的方程;
(ⅱ)若,求△ABM的面積.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com