(3)由上述可知.[-1.1]是的減區(qū)間.那么又聯(lián)立方程組可得,所以[簡要評述]三角復(fù)合問題是綜合運(yùn)用知識的一個方面.復(fù)合函數(shù)問題的認(rèn)識是高中數(shù)學(xué)學(xué)習(xí)的重點和難點.這一方面的學(xué)習(xí)有利于提高綜合運(yùn)用的能力.例5:關(guān)于正弦曲線回答下述問題: 查看更多

 

題目列表(包括答案和解析)

(1)利用函數(shù)單調(diào)性的定義證明函數(shù)h(x)=x+
3
x
在[
3
,∞)
上是增函數(shù);
(2)我們可將問題(1)的情況推廣到以下一般性的正確結(jié)論:已知函數(shù)y=x+
t
x
有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,
t
]
上是減函數(shù),在[
t
,+∞)
上是增函數(shù).
若已知函數(shù)f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性質(zhì)求出函數(shù)f(x)的單調(diào)區(qū)間;又已知函數(shù)g(x)=-x-2a,問是否存在這樣的實數(shù)a,使得對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,請說明理由;如存在,請求出這樣的實數(shù)a的值.

查看答案和解析>>


同步練習(xí)冊答案