正解:即.由得 查看更多

 

題目列表(包括答案和解析)

設(shè)a,b,c分別是△ABC的三個(gè)角A,B,C所對(duì)的邊,研究A=2B是a2=b(b+c)的什么條件?以下是某同學(xué)的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB⇒a=2bcosB
⇒a=2b•
a2+c2-b2
2ac
.變形得a2c=a2b+bc2-b3⇒a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分條件.
請(qǐng)你研究這位同學(xué)解法的正誤,并結(jié)合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的(  )條件.

查看答案和解析>>

設(shè)a,b,c分別是△ABC的三個(gè)角A,B,C所對(duì)的邊,研究A=2B是a2=b(b+c)的什么條件?以下是某同學(xué)的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•
a2+c2-b2
2ac
.變形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分條件.
請(qǐng)你研究這位同學(xué)解法的正誤,并結(jié)合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的( 。l件.
A.充分非必要B.必要非充分
C.充要D.非充分非必要

查看答案和解析>>

設(shè)a,b,c分別是△ABC的三個(gè)角A,B,C所對(duì)的邊,研究A=2B是a2=b(b+c)的什么條件?以下是某同學(xué)的解法:
由A=2B,得sinA=sin2B,即:sinA=2sinB•cosB?a=2bcosB
?a=2b•數(shù)學(xué)公式.變形得a2c=a2b+bc2-b3?a2(c-b)
=b(b+c)(c-b)
所以,b=c或a2=b(b+c)
由此可知:A=2B是a2=b(b+c)的必要非充分條件.
請(qǐng)你研究這位同學(xué)解法的正誤,并結(jié)合自己的思考,可以得到“A=2B”是“a2=b(b+c)”的條件.


  1. A.
    充分非必要
  2. B.
    必要非充分
  3. C.
    充要
  4. D.
    非充分非必要

查看答案和解析>>

如圖1:等邊可以看作由等邊繞頂點(diǎn)經(jīng)過(guò)旋轉(zhuǎn)相似變換得到.但是我們注意到圖形中的的關(guān)系,上述變換也可以理解為圖形是由繞頂點(diǎn)旋轉(zhuǎn)形成的.于是我們得到一個(gè)結(jié)論:如果兩個(gè)正三角形存在著公共頂點(diǎn),則該圖形可以看成是由一個(gè)三角形繞著該頂點(diǎn)旋轉(zhuǎn)形成的.

① 利用上述結(jié)論解決問(wèn)題:如圖2,中,都是等邊三角形,求四邊形的面積;
② 圖3中, ,,仿照上述結(jié)論,推廣出符合圖3的結(jié)論.(寫(xiě)出結(jié)論即可)

查看答案和解析>>

如圖1:等邊可以看作由等邊繞頂點(diǎn)經(jīng)過(guò)旋轉(zhuǎn)相似變換得到.但是我們注意到圖形中的的關(guān)系,上述變換也可以理解為圖形是由繞頂點(diǎn)旋轉(zhuǎn)形成的.于是我們得到一個(gè)結(jié)論:如果兩個(gè)正三角形存在著公共頂點(diǎn),則該圖形可以看成是由一個(gè)三角形繞著該頂點(diǎn)旋轉(zhuǎn)形成的.

① 利用上述結(jié)論解決問(wèn)題:如圖2,中,都是等邊三角形,求四邊形的面積;

② 圖3中, ,仿照上述結(jié)論,推廣出符合圖3的結(jié)論.(寫(xiě)出結(jié)論即可)

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案