(Ⅱ)設(shè)的導(dǎo)函數(shù)是.在(Ⅰ)的條件下.若.求的最小值. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=
x3
3
+
a
2
x2+bx+c(a,b,c∈
R),函數(shù)f(x)的導(dǎo)數(shù)記為f'(x).
(1)若a=f'(2),b=f'(1),c=f'(0),求a、b、c的值;
(2)在(1)的條件下,記F(n)=
1
f′(n)+2
,求證:F(1)+F(2)+F(3)+…+F(n)<
11
18
(n∈
N*);
(3)設(shè)關(guān)于x的方程f'(x)=0的兩個實(shí)數(shù)根為α、β,且1<α<β<2.試問:是否存在正整數(shù)n0,使得|f′(n0)|≤
1
4
?說明理由.

查看答案和解析>>

設(shè)函數(shù)及其導(dǎo)函數(shù)都是定義在R上的函數(shù),則“”是“”的( )

A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

設(shè)函數(shù)f(x)=
x3
3
+
a
2
x2+bx+c(a,b,c∈
R),函數(shù)f(x)的導(dǎo)數(shù)記為f'(x).
(1)若a=f'(2),b=f'(1),c=f'(0),求a、b、c的值;
(2)在(1)的條件下,記F(n)=
1
f′(n)+2
,求證:F(1)+F(2)+F(3)+…+F(n)<
11
18
(n∈
N*);
(3)設(shè)關(guān)于x的方程f'(x)=0的兩個實(shí)數(shù)根為α、β,且1<α<β<2.試問:是否存在正整數(shù)n0,使得|f′(n0)|≤
1
4
?說明理由.

查看答案和解析>>

設(shè)函數(shù)及其導(dǎo)函數(shù)都是定義在R上的函數(shù),則“”是“”的( )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

設(shè)函數(shù)R),函數(shù)的導(dǎo)數(shù)記為.
(1)若,求a、bc的值;
(2)在(1)的條件下,記,求證:F(1)+ F(2)+ F(3)+…+ F(n)<N*);
(3)設(shè)關(guān)于x的方程=0的兩個實(shí)數(shù)根為α、β,且1<α<β<2.試問:是否存在正整數(shù)n0,使得?說明理由.

查看答案和解析>>

一、            選擇題(每小題5分,共60分)

 

BBDACA     CDBDBA

 

二、填空題(每小題4分,共16分)

13.       14.         15.        16.

三、解答題

17.(本小題滿分12分)

解:(Ⅰ)∵,

,得

兩邊平方:=,∴= ………………6分

(Ⅱ)∵

,解得,

又∵, ∴,

,

設(shè)的夾角為,則,∴

的夾角為. …………… 12分

18. (本小題滿分12分)

解:(Ⅰ)小王在第三次考試中通過而領(lǐng)到駕照的概率為:

            ………………………6分

          (Ⅱ)小王在一年內(nèi)領(lǐng)到駕照的概率為:

………………12分

19.(本小題滿分12分)

(Ⅰ)證明:由已知得,所以,即,

,∴, 平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:設(shè)的中點(diǎn)為,連接,則,

是異面直線所成的角或其補(bǔ)角

由(Ⅰ)知,在中,,

.

所以異面直線所成的角為.…………………8分(文12分)

20.(本小題滿分12分)

解:(Ⅰ)∵        

據(jù)題意,,

  ………………………4分

         (Ⅱ)由(Ⅰ)知,

             ∴

∴對于,最小值為 ………………… 8分

的對稱軸為,且拋物線開口向下,

時,最小值為中較小的,

,

∴當(dāng)時,的最小值是-7.

的最小值為-11. ………………………12分

21.(本小題滿分12分)

解:(Ⅰ)∵

          ∴

,則,∴

,∴

.……………6分

     (Ⅱ)證明:由(Ⅰ)知:

          記

          用錯位相減法求和得:

          令

          ∵

          ∴數(shù)列是遞減數(shù)列,∴

          ∴.

          即.………………………12分

       (由證明也給滿分)

22.(本小題滿分14分)

解:(Ⅰ)①當(dāng)直線軸時,

,此時,∴.

(不討論扣1分)

②當(dāng)直線不垂直于軸時,,設(shè)雙曲線的右準(zhǔn)線為,

,作,作且交軸于

根據(jù)雙曲線第二定義有:,

到準(zhǔn)線的距離為.

,得:,

,∴,∵此時,∴

綜上可知.………………………………………7分

(Ⅱ)設(shè),代入雙曲線方程得

,則,且代入上面兩式得:

 ①

     ②

由①②消去

  ③

有:,綜合③式得

,解得

的取值范圍為…………………………14分

 

 

 

 

 

 


同步練習(xí)冊答案