(Ⅱ)若且.求的夾角. 查看更多

 

題目列表(包括答案和解析)

若向量的夾角都是60°,且
(1)求的值;
(2)求夾角的余弦值.

查看答案和解析>>

已知數(shù)學(xué)公式,且數(shù)學(xué)公式的夾角為120°
(1)若數(shù)學(xué)公式求k的值;
(2)求數(shù)學(xué)公式的值.

查看答案和解析>>

已知,且的夾角為120°
(1)若求k的值;
(2)求的值.

查看答案和解析>>

已知向量
a
b
的夾角為60°,且|
a
|=2,|
b
|=1,若
c
=
a
-4
b
,
d
=
a
+2
b

(1)求
a
b
及|
c
+
d
|值?
(2)求
a
c
+
d
的夾角?

查看答案和解析>>

已知向量
a
,
b
的夾角為60°,且|
a
|=2,|
b
|=1,若
c
=
a
-4
b
,
d
=
a
+2
b
,求
(1)
a
b
;                  
(2)|
c
+
d
|.

查看答案和解析>>

一、            選擇題(每小題5分,共60分)

 

BBDACA     CDBDBA

 

二、填空題(每小題4分,共16分)

13.       14.         15.        16.

三、解答題

17.(本小題滿分12分)

解:(Ⅰ)∵,

,得

兩邊平方:=,∴= ………………6分

(Ⅱ)∵

,解得,

又∵, ∴,

,,

設(shè)的夾角為,則,∴

的夾角為. …………… 12分

18. (本小題滿分12分)

解:(Ⅰ)小王在第三次考試中通過而領(lǐng)到駕照的概率為:

            ………………………6分

          (Ⅱ)小王在一年內(nèi)領(lǐng)到駕照的概率為:

………………12分

19.(本小題滿分12分)

(Ⅰ)證明:由已知得,所以,即,

,,∴, 平面

∴平面平面.……………………………4分(文6分)

(Ⅱ)解:設(shè)的中點(diǎn)為,連接,則,

是異面直線所成的角或其補(bǔ)角

由(Ⅰ)知,在中,,,

.

所以異面直線所成的角為.…………………8分(文12分)

20.(本小題滿分12分)

解:(Ⅰ)∵        

據(jù)題意,

  ………………………4分

         (Ⅱ)由(Ⅰ)知,

             ∴

∴對于,最小值為 ………………… 8分

的對稱軸為,且拋物線開口向下,

時,最小值為中較小的,

,

∴當(dāng)時,的最小值是-7.

的最小值為-11. ………………………12分

21.(本小題滿分12分)

解:(Ⅰ)∵

          ∴

,則,∴

,∴

.……………6分

     (Ⅱ)證明:由(Ⅰ)知:

          記

          用錯位相減法求和得:

          令,

          ∵

          ∴數(shù)列是遞減數(shù)列,∴,

          ∴.

          即.………………………12分

       (由證明也給滿分)

22.(本小題滿分14分)

解:(Ⅰ)①當(dāng)直線軸時,

,此時,∴.

(不討論扣1分)

②當(dāng)直線不垂直于軸時,,設(shè)雙曲線的右準(zhǔn)線為

,作,作且交軸于

根據(jù)雙曲線第二定義有:

到準(zhǔn)線的距離為.

,得:

,∴,∵此時,∴

綜上可知.………………………………………7分

(Ⅱ)設(shè),代入雙曲線方程得

,則,且代入上面兩式得:

 ①

     ②

由①②消去

  ③

有:,綜合③式得

,解得

的取值范圍為…………………………14分

 

 

 

 

 

 


同步練習(xí)冊答案