題目列表(包括答案和解析)
已知f(x)=
(1)求f(-x);
(2)求常數(shù)a的值,使f(x)在區(qū)間(-∞,+∞)內(nèi)處處連續(xù).
已知f(x)=ax3+bx2+cx(a≠0)在x=±1時(shí)取得極值,且f(1)=-1.
(1)試求常數(shù)a、b、c的值;
(2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由.
已知f(x)=ax3+bx2+cx(a≠0)在x=±1時(shí)取得極值,
且f(1)=-1.
(1)試求常數(shù)a、b、c的值;
(2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由;
(3)求函數(shù)f(x) 在[-3,]上的最大值與最小值。
已知f(x)=x3+3ax2+bx+a2在x=-1時(shí)有極值0.
①求常數(shù)a,b的值;
②求f(x)的單調(diào)區(qū)間;
③方程f(x)=c在區(qū)間[-4,0]上有三個(gè)不同的實(shí)根時(shí)實(shí)數(shù)c的范圍.
難點(diǎn)磁場(chǎng)
解:(1)f(x)=3, f(x)=-1,所以f(x)不存在,所以f(x)在x=-1處不連續(xù),
但f(x)=f(-1)=-1, f(x)≠f(-1),所以f(x)在x=-1處右連續(xù),左不連續(xù)
f(x)=3=f(1), f(x)不存在,所以f(x)不存在,所以f(x)在x=1不連續(xù),但左連續(xù),右不連續(xù).
又f(x)=f(0)=0,所以f(x)在x=0處連續(xù).
(2)f(x)中,區(qū)間(-∞,-1),[-1,1],(1,5]上的三個(gè)函數(shù)都是初等函數(shù),因此f(x)除不連續(xù)點(diǎn)x=±1外,再也無不連續(xù)點(diǎn),所以f(x)的連續(xù)區(qū)間是(-∞,-1),[-1,1]和(1,5.
殲滅難點(diǎn)訓(xùn)練
答案:A
即f(x)在x=1點(diǎn)不連續(xù),顯知f(x)在(0,1)和(1,2)連續(xù).
答案:C
(1) f(x)=-1, f(x)=1,所以f(x)不存在,故f(x)在x=0處不連續(xù).
(2)f(x)在(-∞,+∞)上除x=0外,再無間斷點(diǎn),由(1)知f(x)在x=0處右連續(xù),所以f(x)在[
-1,0]上是不連續(xù)函數(shù),在[0,1]上是連續(xù)函數(shù).
(2)要使f(x)在(-∞,+∞)內(nèi)處處連續(xù),只要f(x)在x=0連續(xù),f(x)
f(x)=(a+bx)=a,因?yàn)橐?i>f(x)在x=0處連續(xù),只要 f(x)= f(x)
7.證明:設(shè)f(x)=a0x3+a1x2+a2x+a3,函數(shù)f(x)在(-∞,+∞)連續(xù),且x→+∞時(shí),f(x)→+∞;x→-∞時(shí),f(x)→-∞,所以必存在a∈(-∞,+∞),b∈(-∞,?+∞),使f(a)?f(b)<0,所以f(x)的圖象至少在(a,b)上穿過x軸一次,即f(x)=0至少有一實(shí)根.
8.解:不連續(xù)點(diǎn)是x=1,連續(xù)區(qū)間是(-∞,1),(1,+∞)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com