加強直線與圓錐曲線的位置關(guān)系問題的復(fù)習(xí).此處一直為高考的熱點.這類問題常涉及到圓錐曲線的性質(zhì)和直線的基本知識點.線段的中點.弦長.垂直問題.因此分析問題時利用數(shù)形結(jié)合思想和設(shè)而不求法與弦長公式及韋達定理聯(lián)系去解決.這樣加強了對數(shù)學(xué)各種能力的考查. 查看更多

 

題目列表(包括答案和解析)

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有
①②④
①②④
.(請寫出所有正確的序號)

查看答案和解析>>

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線有且只有一個公共點,這樣的直線有3條;
④過雙曲線的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有    .(請寫出所有正確的序號)

查看答案和解析>>

下列是有關(guān)直線與圓錐曲線的命題:
①過點(2,4)作直線與拋物線y2=8x有且只有一個公共點,這樣的直線有2條;
②過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標(biāo)之和等于5,則這樣的直線有且僅有兩條;
③過點(3,1)作直線與雙曲線
x2
4
-y2=1
有且只有一個公共點,這樣的直線有3條;
④過雙曲線x2-
y2
2
=1
的右焦點作直線l交雙曲線于A,B兩點,若|AB|=4,則滿足條件的直線l有3條;
⑤已知雙曲線x2-
y2
2
=1
和點A(1,1),過點A能作一條直線l,使它與雙曲線交于P,Q兩點,且點A恰為線段PQ的中點.
其中說法正確的序號有______.(請寫出所有正確的序號)

查看答案和解析>>

已知拋物線,過M(a,0)且斜率為1的直線與拋物線交于不同的兩點A、B,。

    (1)求a的取值范圍;

    (2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值。

    分析:這是一道直線與圓錐曲線位置關(guān)系的問題,對于(1),可以設(shè)法得到關(guān)于a的不等式,通過解不等式求出a的范圍,即“求范圍,找不等式”;蛘邔表示為另一個變量的函數(shù),利用求函數(shù)的值域求出a的范圍。對于(2)首先要把△NAB的面積表示為一個變量的函數(shù),然后再求它的最大值。

查看答案和解析>>

設(shè)點為平面直角坐標(biāo)系中的一個動點(其中O為坐標(biāo)原點),點P到定點的距離比點P到軸的距離大。

(1)求點P的軌跡方程。

(2)若直線與點P的軌跡相交于A、B兩點,且,求的值。

(3)設(shè)點P的軌跡是曲線C,點是曲線C上的一點,求以Q為切點的曲線C 的切線方程。

【解析】本試題主要考查了軌跡方程的求解,利用直接法設(shè)點表示軌跡方程,并能利用所求的軌跡進行直線與圓錐曲線位置關(guān)系的運用。以及導(dǎo)數(shù)的幾何意義的運用的綜合試題。

 

查看答案和解析>>

難點磁場

解:由方程組6ec8aac122bd4f6e消去y,整理得(a2+b2)x2-2a2x+a2(1-b2)=0                      ①

則橢圓與直線l在第一象限內(nèi)有兩個不同的交點的充要條件是方程①在區(qū)間(0,1)內(nèi)有兩相異實根,令f(x)=(a2+b2)x2-2a2x+a2(1-b2),則有

6ec8aac122bd4f6e

同時滿足上述四個條件的點P(a,b)的存在區(qū)域為下圖所示的陰影部分:

6ec8aac122bd4f6e

殲滅難點訓(xùn)練

一、1.解析:由題意知A(1,1),B(m,6ec8aac122bd4f6e),C(4,2).

直線AC所在方程為x-3y+2=0,

B到該直線的距離為d=6ec8aac122bd4f6e.

6ec8aac122bd4f6e

m∈(1,4),∴當(dāng)6ec8aac122bd4f6e時,SABC有最大值,此時m=6ec8aac122bd4f6e.

答案:B

2.解析:考慮式子的幾何意義,轉(zhuǎn)化為求圓x2+y2=2上的點與雙曲線xy=9上的點的距離的最小值.

答案:C

二、3.解析:設(shè)橢圓方程為6ec8aac122bd4f6e=1(ab>0),以OA為直徑的圓:x2ax+y2=0,兩式聯(lián)立消y6ec8aac122bd4f6ex2ax+b2=0.即e2x2ax+b2=0,該方程有一解x2,一解為a,由韋達定理x2=6ec8aac122bd4f6ea,0<x2a,即0<6ec8aac122bd4f6eaa6ec8aac122bd4f6ee<1.

答案:6ec8aac122bd4f6ee<1

4.解析:由題意可設(shè)拋物線方程為x2=-ay,當(dāng)x=6ec8aac122bd4f6e時,y=-6ec8aac122bd4f6e;當(dāng)x=0.8時,y=-6ec8aac122bd4f6e.由題意知6ec8aac122bd4f6e≥3,即a2-12a-2.56≥0.解得a的最小整數(shù)為13.

答案:13

5.解析:設(shè)P(t,t2-1),Q(s,s2-1)

BPPQ,∴6ec8aac122bd4f6e=-1,

t2+(s-1)ts+1=0

tR,∴必須有Δ=(s-1)2+4(s-1)≥0.即s2+2s-3≥0,

解得s≤-3或s≥1.

答案:(-∞,-36ec8aac122bd4f6e6ec8aac122bd4f6e1,+∞)

三、6.解:設(shè)A(x1,y1),B(x2,y2).

6ec8aac122bd4f6e,得(1-k2x2+2kx-2=0,

又∵直線AB與雙曲線左支交于A、B兩點,

故有6ec8aac122bd4f6e

解得-6ec8aac122bd4f6ek<-1

6ec8aac122bd4f6e

7.解:由拋物線y2=4x,得焦點F(1,0),準(zhǔn)線lx=-1.

(1)設(shè)P(x,y),則B(2x-1,2y),橢圓中心O′,則|FO′|∶|BF|=e,又設(shè)點Bl的距離為d,則|BF|∶d=e,∴|FO′|∶|BF|=|BF|∶d,即(2x-2)2+(2y)2=2x(2x-2),化簡得P點軌跡方程為y2=x-1(x>1).

(2)設(shè)Q(x,y),則|MQ|=6ec8aac122bd4f6e6ec8aac122bd4f6e?

(?)當(dāng)m6ec8aac122bd4f6e≤1,即m6ec8aac122bd4f6e時,函數(shù)t=[x-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6e在(1,+∞)上遞增,故t無最小值,亦即|MQ|無最小值.

(?)當(dāng)m6ec8aac122bd4f6e>1,即m6ec8aac122bd4f6e時,函數(shù)t=[x2-(m6ec8aac122bd4f6e)2]+m6ec8aac122bd4f6ex=m6ec8aac122bd4f6e處有最小值m6ec8aac122bd4f6e,∴|MQ|min=6ec8aac122bd4f6e.

8.解:(1)以AB、OD所在直線分別為x軸、y軸,O為原點,建立平面直角坐標(biāo)系,?

∵|PA|+|PB|=|QA|+|QB|=26ec8aac122bd4f6e>|AB|=4.

∴曲線C為以原點為中心,AB為焦點的橢圓.

設(shè)其長半軸為a,短半軸為b,半焦距為c,則2a=26ec8aac122bd4f6e,∴a=6ec8aac122bd4f6e,c=2,b=1.

∴曲線C的方程為6ec8aac122bd4f6e+y2=1.

(2)設(shè)直線l的方程為y=kx+2,

代入6ec8aac122bd4f6e+y2=1,得(1+5k2)x2+20kx+15=0.

Δ=(20k)2-4×15(1+5k2)>0,得k26ec8aac122bd4f6e.由圖可知6ec8aac122bd4f6e=λ

6ec8aac122bd4f6e

由韋達定理得6ec8aac122bd4f6e

x1=λx2代入得

6ec8aac122bd4f6e

兩式相除得6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e                             ①

6ec8aac122bd4f6eMD、N中間,∴λ<1                                                             ②

又∵當(dāng)k不存在時,顯然λ=6ec8aac122bd4f6e (此時直線ly軸重合).

 

 


同步練習(xí)冊答案