20.解:由已知得. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當x∈(0,e]時,f(x)=ax+lnx(其中e是自然界對數(shù)的底,a∈R)
(1)求f(x)的解析式;
(2)設g(x)=
ln|x|
|x|
,x∈[-e,0)
,求證:當a=-1時,f(x)>g(x)+
1
2
;
(3)是否存在實數(shù)a,使得當x∈[-e,0)時,f(x)的最小值是3?如果存在,求出實數(shù)a的值;如果不存在,請說明理由.

查看答案和解析>>

已知集合M是同時滿足下列兩個性質的函數(shù)f(x)的全體:
①函數(shù)f(x)在其定義域上是單調函數(shù);
②在函數(shù)f(x)的定義域內存在閉區(qū)間[a,b]使得f(x)在[a,b]上的最小值是
a
2
,且最大值是
b
2
.請解答以下問題
(1)判斷函數(shù)f(x)=x+
2
x
(x∈(0,+∞))
是否屬于集合M?并說明理由;
(2)判斷函數(shù)g(x)=-x3是否屬于集合M?并說明理由.若是,請找出滿足②的閉區(qū)間[a,b];
(3)若函數(shù)h(x)=
x-1
+t∈M
,求實數(shù)t的取值范圍.

查看答案和解析>>

已知數(shù)列{an}中,a1=1,且點P(an,an+1)(n∈N*)在直線x-y+1=0上.
(1)求數(shù)列{an}的通項公式;
(2)若函數(shù)f(n)=
1
n+a1
+
1
n+a2
+
1
n+a3
+…+
1
n+an
(n∈N,且n≥2)
,求函數(shù)f(n)的最小值;
(3)設bn=
1
an
,Sn
表示數(shù)列{bn}的前項和.試問:是否存在關于n的整式g(n),使得S1+S2+S3+…+Sn-1=(Sn-1)•g(n)對于一切不小于2的自然數(shù)n恒成立?若存在,寫出g(n)的解析式,并加以證明;若不存在,試說明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx,f(x+1)為偶函數(shù),函數(shù)f(x)的圖象與直線y=x相切.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=[f(x)-k]x在(-∞,+∞)上是單調減函數(shù),那么:
①求k的取值范圍;
②是否存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請求出區(qū)間[m,n];若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=
mxx2+n
(m,n∈R)
在x=1處取得極值2,
(1)求f(x)的解析式;
(2)設A是曲線y=f(x)上除原點O外的任意一點,過OA的中點且垂直于x軸的直線交曲線于點B,試問:是否存在這樣的點A,使得曲線在點B處的切線與OA平行?若存在,求出點A的坐標;若不存在,說明理由;
(3)設函數(shù)g(x)=x2-2ax+a,若對于任意x1∈R的,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實數(shù)a的取值范圍.

查看答案和解析>>


同步練習冊答案